



| Description of individual educational component (module)                                                          |                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| بینایی ماشین                                                                                                      |                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                                                                   | Machine Vision                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                   | کار شناسی ار شد                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                                                                   | Master of Science (M.Sc)                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Organisation                                                                                                      | Sari Agricultural Sciences and Natural Resources University<br>(SANRU)                                                                                                                                                                                                                                  |  |  |  |  |  |
| Faculty                                                                                                           | Agricultural engineering                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Department                                                                                                        | Mechanics of Biosystems engineering                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Responsible person                                                                                                | Assoc. Prof. Dr. –Ing. Davood Kalantari                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Type of course unit                                                                                               | Elective Course                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Level of course unit                                                                                              | Second cycle                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Year of study (if applicable),<br>semester/trimester when the<br>individual educational component<br>is delivered | 3 <sup>rd</sup> semester                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Number of ECTS credits allocated                                                                                  | 3 Iranian Credits (Theoretical Credits: 2, Practical Credit: 1)<br>(Equal to 11.5 ECTS)                                                                                                                                                                                                                 |  |  |  |  |  |
| Total hours                                                                                                       |                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Contact hours                                                                                                     | 80 (32+48)                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Self-study hours                                                                                                  | Not specified                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Mode of delivery                                                                                                  | Face-to-face                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Maximum attendance                                                                                                | 20                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Name of lecturer(s)                                                                                               | Dr. Sajad Sabzi                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Prerequisites and co-requisites                                                                                   | Prerequisites: Basic Mathematics, Basic Physics, Basic Optics,<br>Programing with Matlab                                                                                                                                                                                                                |  |  |  |  |  |
| Course contents                                                                                                   | 1. Introduction to the Agricultural Machine Vision<br>Topic 1. Elements of an agricultural machine vision system, image<br>formation in eye and in a camera, the image sensors, photosensitive<br>sensors, basic parameters of a digital image, lens Equation, image<br>resolution, and depth of Field, |  |  |  |  |  |
|                                                                                                                   | <b>2. Digital image properties</b><br>Topic 2. Introduction: visual perception of the image, Image quality, noise in images, topological properties of digital images, histograms,                                                                                                                      |  |  |  |  |  |
|                                                                                                                   | Topic 3. Digital color images: Physics of color, color spaces, the RGB color space, other color representations such as HIS, HSV, YUV and YCbCr, converting digital color images to digital grayscale images,                                                                                           |  |  |  |  |  |
|                                                                                                                   | Topic 4. Chromatic images: color equipment's and conversion, conversion of gray images to colored, color separation with image processing, digital grayscale images,                                                                                                                                    |  |  |  |  |  |
|                                                                                                                   | Topic 5. Binary images: Formation of binary images, geometric properties, topological properties, object recognition in binary images, binary algorithms                                                                                                                                                |  |  |  |  |  |
|                                                                                                                   | <b>3. Image pre-processing</b><br>Topic 6. Pixel pre-processing: pixel brightness, brightness<br>interpolation, Position-dependent brightness correction, gray-scale<br>transformation, pixel coordinate transformations,                                                                               |  |  |  |  |  |
|                                                                                                                   | Topic 7. Local pre-processing: Image smoothing, edge detectors,<br>Canny edge detection, Gaussian Edge Detection, parametric edge<br>models, line detection by local pre-processing operators, detection of                                                                                             |  |  |  |  |  |



دلانشگاه علوم کَشورزی فرمین طبیعی Sari Agricultural Sciences and Nam----

|                                                                       | corners, scale in image processing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                       | Topic 8. Image segmentation: Partitioning an image, segmentation by thresholding, edge-based segmentation, region-based segmentation, watershed segmentation, splitting and merging, segmentation of surfaces, segmentation of curves, active contours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                       | Topic 9. Geometric transformations: Translations, scaling, rotation, shearing and combining the transforms, backward mapping, interpolation and holography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                       | <b>4. Image enhancement</b><br>Topic 10. Image enhancement in frequency field, histogram<br>Modification, gray scale modification, image restoration enhancement<br>using the Laplacian operator,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                       | Topic 11. Image filtering operations and enhancements: Sharpening operators, smoothing, averaging, linear filters, Median filter, Gaussian Smoothing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                       | <b>5. More specified Image processing</b><br>Topic 12. Morphological image processing: Binary erosion/dilation, opening/closing, hit-or-miss transforms,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                                       | Topic 13. Blob analysis: Blob features, Blob classification, Blob extraction, the Recursive Grass-Fire algorithm, the Sequential Grass-Fire algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Recommended or required reading<br>and other learning resources/tools | <ol> <li>Acharya, T., Ray, A. K. 2005. Image processing principles<br/>and applications. John Wiley and Sons</li> <li>Bovik, A., C .2009. The essential guide to image processing.<br/>Academic Press</li> <li>Davies, E, R.2005. Machine vision, theory, algorithms, and<br/>practicalities. Elsevier</li> <li>Gonzalez, R.C., Woods, E. R. 2008. Digital image<br/>processing. Prentice Hall.</li> <li>Hornberg, A .2006. Handbook of machine vision, Wiley-<br/>VCH.</li> <li>Moeslund, T.B. 2012. Introduction to video and image<br/>processing: Building real systems and applications.<br/>Springer-Verlag, London.</li> <li>Petrou M. and Petrou, C. 2010. Image Processing: The<br/>Fundamentals. John Wiley and Sons.</li> <li>Pratt, W.K. 2007. Digital Image Processing. 4<sup>th</sup> edition.<br/>Wiley.</li> <li>Sonka, M., Hlavac, V., Boyle, D. R. 2014. Image<br/>processing: Analysis and Machine Vision, 4<sup>th</sup> edition,<br/>Cengage Learning.</li> <li>Sun D-W. 2007. Computer vision technology for food<br/>quality evaluation, Academic press.</li> </ol> |  |  |
| Language of instruction                                               | Persian/English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

## Learning outcomes of the course unit

Learning outcome of the course unit includes the ability to analyze a digital image and extract the necessary information, together with the ability to use different mathematical models for image processing such as hidden Markov models; Kalman lters; point distribution models, and pattern recognition.





## Planned learning activities and teaching methods

Lectures, tutorials, and problem solving

## Assessment methods and criteria

The final grade is based on a three-point system. It may consist of the results of a final written assignment for the final exam (70%), Literature review (20%), and Report quality (10%) according the «Assessment criteria table».

| Mapping Programme Key Learning Outcomes to Module Learning Outcomes                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Programme Key Learning Outcomes                                                                                                                                                                                                                                                                | Module Learning Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| <ul> <li>Different types of image transforms,</li> <li>Image data compression,</li> <li>Describing the image segmentation using different methods,</li> <li>Description of shape representation,</li> <li>Describing the 2D and 3D Vision,</li> <li>Describing the motion analysis.</li> </ul> | <ul> <li>On successful competition of this module students should be able to:</li> <li>1. analyze and enhance a digital image and transform it,</li> <li>2. use the computer tools and programs for extracting the necessary information from a given image,</li> <li>3. do a case study based on digital image processing and analysis;</li> <li>4. use the Matlab software for performing a specified case study, such as using the image</li> </ul> |  |  |  |
| e                                                                                                                                                                                                                                                                                              | <ul><li>extracting the necessary informagiven image,</li><li>3. do a case study based on digit processing and analysis;</li><li>4. use the Matlab software for performance.</li></ul>                                                                                                                                                                                                                                                                  |  |  |  |

|                                      | Assessment criteria table                                                                                           |                                                                                                                                                          |                                                                                                                      |                                                                                                                                             |                                                                                                                                   |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Attribute                            | Grade A<br>(18-20 out of 20)<br>(Excellent)                                                                         | Grade B<br>(16-18 out of 20)<br>(Very good)                                                                                                              | Grade C<br>(14-16 out of 20)<br>(Good)                                                                               | Grade D/E<br>(12-16 out of 20)<br>(Satisfactory)                                                                                            | Grade F/FX<br>(<12 out of 20)<br>Failed /<br>Insufficient                                                                         |  |  |  |
| Final Exam-<br>written part<br>(70%) | The complete<br>solution of the<br>task without<br>serious flaws is<br>given. The correct<br>answer is<br>provided. | The roughly<br>complete solution<br>of the task is<br>provided. The<br>correct answer<br>with some minor<br>mistakes in<br>interim steps is<br>received. | The content of<br>the solution is<br>good. The answer<br>with some<br>weaknesses in<br>interim steps is<br>received. | The content of<br>the task is<br>satisfactory but<br>with several<br>weaknesses<br>regarding<br>evidence and/or<br>some lack of<br>clarity. | The task of the<br>work fell short of<br>that required to<br>pass due to lack of<br>evidence base/or<br>very poor clarity.        |  |  |  |
| Literature<br>review (20%)           | The literature<br>library assembled<br>by the student<br>was outstanding<br>with no serious<br>missing articles.    | The literature<br>library assembled<br>by the student<br>was very good<br>with only a few<br>missing key<br>articles.                                    | The literature<br>library assembled<br>had a number of<br>missing key<br>articles and<br>lacked breadth.             | The literature<br>library lacked<br>breadth to a great<br>degree and was<br>missing many key<br>articles.                                   | The literature<br>library was<br>lacking in breadth<br>and key articles to<br>an extent that fell<br>short of a passing<br>grade. |  |  |  |
| Report<br>quality (10%)              | The style and<br>clarity of the<br>report was<br>excellent.                                                         | The style and/or<br>clarity of the<br>report were very<br>good.                                                                                          | The style and/or<br>clarity of the<br>report were good.                                                              | The style and/or<br>clarity of the<br>report were<br>adequate.                                                                              | The style and/or<br>clarity of the<br>report fell short of<br>a passing grade.                                                    |  |  |  |



