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Preface

One of the first times I ever encountered video and image processing was in a
semester project at my fourth year of studying. The aim of the project was to design
a system that automatically located the center and size of mushrooms in an image.
Given this information a robot should pick the mushrooms. I was intrigued by the
notion of a “seeing computer”. Little did I know that this encounter would shape
most parts (so far) of my professional life.

I decided to study video and image processing in depth and signed up for a mas-
ter’s program focusing on these topics. I soon realized that I had made a good choice,
but was puzzled by the fact that the wonders of digital video and image processing
often were presented in a strict mathematical manner. While this is fine for hardcore
engineers (including me) and computer scientists, it makes video and image pro-
cessing unnecessarily difficult for others. I really felt this was a pity and decided to
do something about it—that was 15 years ago.

In this book the concepts and methods are described in a less mathematical man-
ner and the language is in general casual. In order to assist the reader with the math
that is used in the book Appendix B is included. In this regards this textbook is self-
contained. Some of the key algorithms are exemplified in C-code. Please note that
the code is neither optimal nor complete and merely serves as an additional input
for comprehending the algorithms.

Another aspect that puzzled me as a student was that the textbooks were all about
image processing, while we constructed systems that worked with video. Many of
the methods described for image processing can obviously also be applied to video
data. But video data add the temporal dimension, which is often the key to success
in systems processing video. This book therefore aims at not only introducing image
processing but also video processing. Moreover, the last two chapters of the book
describe the process of designing and implementing real systems processing video
data. On the website for the book you can find detailed descriptions of other practical
systems processing video: http://www.vip.aau.dk.

I have tried to make the book as concise as possible. This has forced me to leave
out details and topics that might be of interest to some readers. As a compromise
each chapter is ended by a “Further Information” section wherein pointers to addi-
tional concepts, methods and details are given.
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vi Preface

For Instructors Each chapter is ended by a number of exercises. The first exer-
cise after each chapter aims at assessing to what degree the students have understood
the main concepts. If possible, it is recommended that these exercises are discussed
within small groups. The following exercises have a more practical focus where
concrete problems need to be solved using the different methods/algorithms pre-
sented in the associated chapters. Lastly one or more so-called additional exercises
are present. These aim at topics not discussed directly in the chapters. The idea be-
hind these exercises is that they can serve as self-studies where each student (or
a small group of students) finds the solution by investigating other sources. They
could then present their findings for other students.

Besides the exercises listed in the book I strongly recommend to combine those
with examples and exercises where real images/videos are processed. Personally
I start with ImageJ for image processing and EyesWeb for video processing. The
main motivation for using these programs is that they are easy to learn and hence
the students can focus on the video and image processing as opposed to a specific
programming language, when solving the exercises. However, when it comes to
building real systems I recommend using OpenCV or openFrameworks (EyesWeb
or similar can of course also be used to build systems, but they do not generalize as
well). To this end students of course need to have a course on procedural program-
ming before or in parallel with the image processing course. To make the switch
from ImageJ/Eyesweb to a more low-level environment like OpenCV, I normally
ask each student to do an assignment where they write a program that can capture
an image, make some image processing and display the result. When the student can
do this he has a framework for implementing “all” other image processing methods.
The time allocated for this assignment of course depends on the programming ex-
periences of the students.
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1Introduction

If you look at the image in Fig. 1.1 you can see three children. The two oldest
children look content with life, while the youngest child looks a bit puzzled. We
can detail this description further using adjectives, but we will never ever be able to
present a textual description, which encapsulates all the details in the image. This
fact is normally referred to as “a picture is worth a thousand words”.

So, our eyes and our brain are capable of extracting detailed information far
beyond what can be described in text, and it is this ability we want to replicate in
the “seeing computer”. To this end a camera replaces the eyes and the (video and
image) processing software replaces the human brain. The purpose of this book is
to present the basics within these two topics; cameras and video/image processing.

Cameras have been around for many years and were initially developed with the
purpose of “freezing” a part of the world, for example to be used in newspapers. For
a long time cameras were analog, meaning that the video and images were captured
on film. As digital technology matured, the possibility of digital video and images
arose, and video and image processing became relevant and necessary sciences.

Fig. 1.1 An image
containing three children

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_1, © Springer-Verlag London Limited 2012
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2 1 Introduction

Some of the first applications of digital video and image processing were to im-
prove the quality of the captured images, but as the power of computers grew, so did
the number of applications where video and image processing could make a differ-
ence. Today, video and image processing are used in many diverse applications, such
as astronomy (to enhance the quality), medicine (to measure and understand some
parameters of the human body, e.g., blood flow in fractured veins), image compres-
sion (to reduce the memory requirement when storing an image), sports (to capture
the motion of an athlete in order to understand and improve the performance), re-
habilitation (to assess the locomotion abilities), motion pictures (to capture actors’
motion in order to produce special effects based on graphics), surveillance (detect
and track individuals and vehicles), production industries (to assess the quality of
products), robot control (to detect objects and their pose so a robot can pick them
up), TV productions (mixing graphics and live video, e.g., weather forecast), bio-
metrics (to measure some unique parameters of a person), photo editing (improving
the quality or adding effects to photographs), etc.

Many of these applications rely on the same video and image processing meth-
ods, and it is these basic methods which are the focus of this book.

1.1 The Different Flavors of Video and Image Processing

The different video and image processing methods are often grouped into the cate-
gories listed below. There is no unique definition of the different categories and to
make matters worse they also overlap significantly. Here is one set of definitions:
Video and Image Compression This is probably the most well defined category
and contains the group of methods used for compressing video and image data.

Image Manipulation This category covers methods used to edit an image. For ex-
ample, when rotating or scaling an image, but also when improving the quality by
for example changing the contrast.

Image Processing Image processing originates from the more general field of sig-
nal processing and covers methods used to segment the object of interest. Seg-
mentation here refers to methods which in some way enhance the object while
suppressing the rest of the image (for example the edges in an image).

Video Processing Video processing covers most of the image processing methods,
but also includes methods where the temporal nature of video data is exploited.

Image Analysis Here the goal is to analyze the image with the purpose of first
finding objects of interest and then extracting some parameters of these objects.
For example, finding an object’s position and size.

Machine Vision When applying video processing, image processing or image
analysis in production industries it is normally referred to as machine vision or
simply vision.

Computer Vision Humans have human vision and similarly a computer has com-
puter vision. When talking about computer vision we normally mean advanced
algorithms similar to those a human can perform, e.g., face recognition. Normally
computer vision also covers all methods where more than one camera is applied.
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Fig. 1.2 The block diagram provides a general framework for many systems working with video
and images

Even though this book is titled: “Video and Image Processing” it also covers
basic methods from Image Manipulation and Image Analysis in order to provide
the reader with a solid foundation for understanding and working with images and
video.

1.2 General Framework

No matter which category you are working within (except for Video and Image
Compression) you can very often apply the framework illustrated in Fig. 1.2. Some-
times not all blocks are included in a particular system, but the framework neverthe-
less provides a relevant guideline.

Underneath each block in the figure we have illustrated a typical output. The
particular outputs are from a gesture-based human–computer-interface system that
counts the number of fingers a user is showing in front of the camera.

Below we briefly describe the purpose of the different blocks:
Image Acquisition In this block everything to do with the camera and setup of your

system is covered, e.g., camera type, camera settings, optics, and light sources.
Pre-processing This block does something to your image before the actual pro-
cessing commences, e.g., convert the image from color to gray-scale or crop the
most interesting part of the image (as seen in Fig. 1.2).

Segmentation This is where the information of interest is extracted from the im-
age or video data. Often this block is the “heart” of a system. In the example in
the figure the information is the fingers. The image below the segmentation block
shows that the fingers (together with some noise) have been segmented (indicated
by white objects).

Representation In this block the objects extracted in the segmentation block are
represented in a concise manner, e.g., using a few representative numbers as illus-
trated in the figure.

Classification Finally this block examines the information produced by the previ-
ous block and classifies each object as being an object of interest or not. In the
example in the figure this block determines that three finger objects are present
and hence output this.

It should be noted that the different blocks might not be as clear-cut defined
in reality as the figure suggests. One designer might place a particular method in
one block while another designer will place the same method in the previous or
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following block. Nevertheless the framework is an excellent starting point for any
video and image processing system.

The last two blocks are sometimes replaced by one block called BLOB Analysis.
This is especially done when the output of the segmentation block is a black and
white image as is the case in the figure. In this book we follow this idea and have
therefore merged the descriptions of these two blocks into one—BLOB Analysis.

In Table 1.1 a layout of the different chapters in the book is listed together with a
short overview of the contents. Please note that in Chaps. 12 and 13 the design and
implementation of two systems are described. These are both based on the overall
framework in Fig. 1.2 and the reader is encouraged to browse through these chapters
before reading the rest of the book.

1.3 The Chapters in This Book

Table 1.1 The organization and topics of the different chapters in this book

# Title Topics

2 Image Acquisition This chapter describes what light is and how a camera
can capture the light and convert it into an image.

3 Color Images This chapter describes what color images are and how
they can be represented.

4 Point Processing This chapter presents some of the basic image
manipulation methods for understanding and improving
the quality of an image. Moreover the chapter presents
one of the basic segmentation algorithms.

5 Neighborhood Processing This chapter presents, together with the next chapter, the
basic image processing methods, i.e., how to segment or
enhance certain features in an image.

6 Morphology Similar to above, but focuses on one particular group of
methods.

7 BLOB Analysis This chapter concerns image analysis, i.e., how to detect,
describe, and classify objects in an image.

8 Segmentation in Video While most methods within image processing also apply
to video, this chapter presents a particularly useful
method for segmenting objects in video data.

9 Tracking This chapter is concerned with how to following objects
from image to image.

10 Geometric Transformation This chapter deals with another aspect of image
manipulation, namely how to change the geometry
within an image, e.g., rotation.

11 Visual Effects This chapters shows how video and image processing
can be used to create visual effects.

12 + 13 Application Examples In these chapters concrete examples of video processing
systems are presented. The purpose of these chapters is
twofold. Firstly to put some of the presented methods
into a context and secondly to provide inspiration for
what video and image processing can be used for.
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1.4 Exercises

Exercise 1: Find additional application examples where processing of digital video
and/or images is used.





2Image Acquisition

Before any video or image processing can commence an image must be captured by
a camera and converted into a manageable entity. This is the process known as image
acquisition. The image acquisition process consists of three steps; energy reflected
from the object of interest, an optical system which focuses the energy and finally a
sensor which measures the amount of energy. In Fig. 2.1 the three steps are shown
for the case of an ordinary camera with the sun as the energy source. In this chapter
each of these three steps are described in more detail.

2.1 Energy

In order to capture an image a camera requires some sort of measurable energy. The
energy of interest in this context is light or more generally electromagnetic waves.
An electromagnetic (EM) wave can be described as massless entity, a photon, whose
electric and magnetic fields vary sinusoidally, hence the name wave. The photon
belongs to the group of fundamental particles and can be described in three different
ways:
• A photon can be described by its energy E, which is measured in electronvolts

[eV]
• A photon can be described by its frequency f , which is measured in Hertz [Hz].

A frequency is the number of cycles or wave-tops in one second
• A photon can be described by its wavelength λ, which is measured in meters [m].

A wavelength is the distance between two wave-tops
The three different notations are connected through the speed of light c and

Planck’s constant h:

λ = c

f
, E = h · f ⇒ E = h · c

λ
(2.1)

An EM wave can have different wavelengths (or different energy levels or differ-
ent frequencies). When we talk about all possible wavelengths we denote this as the
EM spectrum, see Fig. 2.2.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_2, © Springer-Verlag London Limited 2012
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Fig. 2.1 Overview of the typical image acquisition process, with the sun as light source, a tree as
object and a digital camera to capture the image. An analog camera would use a film where the
digital camera uses a sensor

In order to make the definitions and equations above more understandable, the
EM spectrum is often described using the names of the applications where they are
used in practice. For example, when you listen to FM-radio the music is transmitted
through the air using EM waves around 100 · 106 Hz, hence this part of the EM
spectrum is often denoted “radio”. Other well-known applications are also included
in the figure.

The range from approximately 400–700 nm (nm = nanometer = 10−9) is de-
noted the visual spectrum. The EM waves within this range are those your eye (and
most cameras) can detect. This means that the light from the sun (or a lamp) in prin-
ciple is the same as the signal used for transmitting TV, radio or for mobile phones
etc. The only difference, in this context, is the fact that the human eye can sense
EM waves in this range and not the waves used for e.g., radio. Or in other words, if
our eyes were sensitive to EM waves with a frequency around 2 · 109 Hz, then your
mobile phone would work as a flash light, and big antennas would be perceived as
“small suns”. Evolution has (of course) not made the human eye sensitive to such
frequencies but rather to the frequencies of the waves coming from the sun, hence
visible light.

2.1.1 Illumination

To capture an image we need some kind of energy source to illuminate the scene.
In Fig. 2.1 the sun acts as the energy source. Most often we apply visual light, but
other frequencies can also be applied, see Sect. 2.5.
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Fig. 2.2 A large part of the electromagnetic spectrum showing the energy of one photon, the
frequency, wavelength and typical applications of the different areas of the spectrum

Fig. 2.3 The effect of illuminating a face from four different directions

If you are processing images captured by others there is nothing much to do
about the illumination (although a few methods will be presented in later chapters)
which was probably the sun and/or some artificial lighting. When you, however, are
in charge of the capturing process yourselves, it is of great importance to carefully
think about how the scene should be lit. In fact, for the field of Machine Vision it
is a rule-of-thumb that illumination is 2/3 of the entire system design and software
only 1/3. To stress this point have a look at Fig. 2.3. The figure shows four images
of the same person facing the camera. The only difference between the four images
is the direction of the light source (a lamp) when the images were captured!

Another issue regarding the direction of the illumination is that care must be
taken when pointing the illumination directly toward the camera. The reason be-
ing that this might result in too bright an image or a nonuniform illumination, e.g.,
a bright circle in the image. If, however, the outline of the object is the only infor-
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Fig. 2.4 Backlighting. The light source is behind the object of interest, which makes the object
stand out as a black silhouette. Note that the details inside the object are lost

mation of interest, then this way of illumination—denoted backlighting—can be an
optimal solution, see Fig. 2.4. Even when the illumination is not directed toward
the camera overly bright spots in the image might still occur. These are known as
highlights and are often a result of a shiny object surface, which reflects most of
the illumination (similar to the effect of a mirror). A solution to such problems is
often to use some kind of diffuse illumination either in the form of a high number
of less-powerful light sources or by illuminating a rough surface which then reflects
the light (randomly) toward the object.

Even though this text is about visual light as the energy form, it should be men-
tioned that infrared illumination is sometimes useful. For example, when tracking
the movements of human body parts, e.g. for use in animations in motion pictures,
infrared illumination is often applied. The idea is to add infrared reflecting markers
to the human body parts, e.g., in the form of small balls. When the scene is illu-
minated by infrared light, these markers will stand out and can therefore easily be
detected by image processing. A practical example of using infrared illumination is
given in Chap. 12.

2.2 The Optical System

After having illuminated the object of interest, the light reflected from the object
now has to be captured by the camera. If a material sensitive to the reflected light
is placed close to the object, an image of the object will be captured. However, as
illustrated in Fig. 2.5, light from different points on the object will mix—resulting
in a useless image. To make matters worse, light from the surroundings will also
be captured resulting in even worse results. The solution is, as illustrated in the
figure, to place some kind of barrier between the object of interest and the sensing
material. Note that the consequence is that the image is upside-down. The hardware
and software used to capture the image normally rearranges the image so that you
never notice this.

The concept of a barrier is a sound idea, but results in too little light entering the
sensor. To handle this situation the hole is replaced by an optical system. This section
describes the basics behind such an optical system. To put it into perspective, the
famous space-telescope—the Hubble telescope—basically operates like a camera,
i.e., an optical system directs the incoming energy toward a sensor. Imagine how
many man-hours were used to design and implement the Hubble telescope. And
still, NASA had to send astronauts into space in order to fix the optical system due
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Fig. 2.5 Before introducing a barrier, the rays of light from different points on the tree hit multiple
points on the sensor and in some cases even the same points. Introducing a barrier with a small
hole significantly reduces these problems

to an incorrect design. Building optical systems is indeed a complex science! We
shall not dwell on all the fine details and the following is therefore not accurate to
the last micro-meter, but the description will suffice and be correct for most usages.

2.2.1 The Lens

One of the main ingredients in the optical system is the lens. A lens is basically
a piece of glass which focuses the incoming light onto the sensor, as illustrated in
Fig. 2.6. A high number of light rays with slightly different incident angles collide
with each point on the object’s surface and some of these are reflected toward the
optics. In the figure, three light rays are illustrated for two different points. All three
rays for a particular point intersect in a point to the right of the lens. Focusing such
rays is exactly the purpose of the lens. This means that an image of the object is
formed to the right of the lens and it is this image the camera captures by placing a
sensor at exactly this position. Note that parallel rays intersect in a point, F, denoted
the Focal Point. The distance from the center of the lens, the optical center O , to
the plane where all parallel rays intersect is denoted the Focal Length f . The line on
which O and F lie is the optical axis.

Let us define the distance from the object to the lens as, g, and the distance from
the lens to where the rays intersect as, b. It can then be shown via similar triangles,
see Appendix B, that

1

g
+ 1

b
= 1

f
(2.2)

f and b are typically in the range [1 mm,100 mm]. This means that when the object
is a few meters away from the camera (lens), then 1

g
has virtually no effect on the

equation, i.e., b = f . What this tells us is that the image inside the camera is formed
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Fig. 2.6 The figure shows
how the rays from an object,
here a light bulb, are focused
via the lens. The real light
bulb is to the left and the
image formed by the lens is to
the right

at a distance very close to the focal point. Equation 2.2 is also called the thin lens
equation.

Another interesting aspect of the lens is that the size of the object in the image,
B , increases as f increased. This is known as optical zoom. In practice f is changed
by rearranging the optics, e.g., the distance between one or more lenses inside the
optical system.1 In Fig. 2.7 we show how optical zoom is achieved by changing the
focal length. When looking at Fig. 2.7 it can be shown via similar triangles that

b

B
= g

G
(2.3)

where G is the real height of the object. This can for example be used to compute
how much a physical object will fill on the imaging censor chip, when the camera is
placed at a given distance away from the object.

Let us assume that we do not have a zoom-lens, i.e., f is constant. When we
change the distance from the object to the camera (lens), g, Eq. 2.2 shows us that b

should also be increased, meaning that the sensor has to be moved slightly further
away from the lens since the image will be formed there. In Fig. 2.8 the effect of not
changing b is shown. Such an image is said to be out of focus. So when you adjust
focus on your camera you are in fact changing b until the sensor is located at the
position where the image is formed.

The reason for an unfocused image is illustrated in Fig. 2.9. The sensor consists
of pixels, as will be described in the next section, and each pixel has a certain size.
As long as the rays from one point stay inside one particular pixel, this pixel will be
focused. If rays from other points also intersect the pixel in question, then the pixel
will receive light from more points and the resulting pixel value will be a mixture of
light from different points, i.e., it is unfocused.

Referring to Fig. 2.9 an object can be moved a distance of gl further away from
the lens or a distance of gr closer to the lens and remain in focus. The sum of gl and
gr defines the total range an object can be moved while remaining in focus. This
range is denoted as the depth-of-field.

1Optical zoom should not be confused with digital zoom, which is done through software.
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Fig. 2.7 Different focal
lengths results in optical
zoom

Fig. 2.8 A focused image
(left) and an unfocused image
(right). The difference
between the two images is
different values of b

A smaller depth-of-field can be achieved by increasing the focal length. However,
this has the consequence that the area of the world observable to the camera is
reduced. The observable area is expressed by the angle V in Fig. 2.10 and denoted
the field-of-view of the camera. The field-of-view depends, besides the focal length,
also on the physical size of the image sensor. Often the sensor is rectangular rather
than square and from this follows that a camera has a field-of-view in both the
horizontal and vertical direction denoted FOVx and FOVy , respectively. Based on
right-angled triangles, see Appendix B, these are calculated as

FOVx = 2 · tan−1
(

width of sensor/2

f

)

FOVy = 2 · tan−1
(

height of sensor/2

f

) (2.4)
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Fig. 2.9 Depth-of-field. The solid lines illustrate two light rays from an object (a point) on the
optical axis and their paths through the lens and to the sensor where they intersect within the same
pixel (illustrated as a black rectangle). The dashed and dotted lines illustrate light rays from two
other objects (points) on the optical axis. These objects are characterized by being the most extreme
locations where the light rays still enter the same pixel

Fig. 2.10 The field-of-view
of two cameras with different
focal lengths. The
field-of-view is an angle, V,
which represents the part of
the world observable to the
camera. As the focal length
increases so does the distance
from the lens to the sensor.
This in turn results in a
smaller field-of-view. Note
that both a horizontal
field-of-view and a vertical
field-of-view exist. If the
sensor has equal height and
width these two
fields-of-view are the same,
otherwise they are different

where the focal length, f , and width and height are measured in mm. So, if we have
a physical sensor with width = 14 mm, height = 10 mm and a focal length = 5 mm,
then the fields-of-view will be

FOVx = 2 · tan−1
(

7

5

)
= 108.9◦, FOVy = 2 · tan−1(1) = 90◦ (2.5)

Another parameter influencing the depth-of-field is the aperture. The aperture
corresponds to the human iris, which controls the amount of light entering the hu-
man eye. Similarly, the aperture is a flat circular object with a hole in the center
with adjustable radius. The aperture is located in front of the lens and used to con-
trol the amount of incoming light. In the extreme case, the aperture only allows
rays through the optical center, resulting in an infinite depth-of-field. The downside
is that the more light blocked by the aperture, the lower shutter speed (explained
below) is required in order to ensure enough light to create an image. From this it
follows that objects in motion can result in blurry images.
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Fig. 2.11 Three different camera settings resulting in three different depth-of-fields

To sum up, the following interconnected issues must be considered: distance to
object, motion of object, zoom, focus, depth-of-field, focal length, shutter, aperture,
and sensor. In Figs. 2.11 and 2.12 some of these issues are illustrated. With this
knowledge you might be able to appreciate why a professional photographer can
capture better images than you can!

2.3 The Image Sensor

The light reflected from the object of interest is focused by some optics and now
needs to be recorded by the camera. For this purpose an image sensor is used. An
image sensor consists of a 2D array of cells as seen in Fig. 2.13. Each of these
cells is denoted a pixel and is capable of measuring the amount of incident light and
convert that into a voltage, which in turn is converted into a digital number.

The more incident light the higher the voltage and the higher the digital number.
Before a camera can capture an image, all cells are emptied, meaning that no charge
is present. When the camera is to capture an image, light is allowed to enter and
charges start accumulating in each cell. After a certain amount of time, known as the
exposure time, and controlled by the shutter, the incident light is shut out again. If
the exposure time is too low or too high the result is an underexposed or overexposed
image, respectively, see Fig. 2.14.

Many cameras have a built-in intelligent system that tries to ensure the image
is not over- or underexposed. This is done by measuring the amount of incoming
light and if too low/high correct the image accordingly, either by changing the ex-
posure time or more often by an automatic gain control. While the former improves
the image by changing the camera settings, the latter is rather a post-processing step.
Both can provide more pleasing video for the human eye to watch, but for automatic
video analysis you are very often better off disabling such features. This might sound
counter intuitive, but since automatic video/image processing is all about manipu-
lating the incoming light, we need to understand and be able to foresee incoming
light in different situations and this can be hard if the camera interferes beyond our
control and understanding. This might be easier understood after reading the next
chapter. The point is that when choosing a camera you need to remember to check
if the automatic gain control is mandatory or if it can be disabled. Go for a cam-
era where it can be disabled. It should of course be added that if you capture video
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Fig. 2.12 Examples of how different settings for focal length, aperture and distance to object re-
sult in different depth-of-fields. For a given combination of the three settings the optics are focused
so that the object (person) is in focus. The focused checkers then represent the depth-of-field for
that particular setting, i.e., the range in which the object will be in focus. The figure is based on a
Canon 400D

in situations where the amount of light can change significantly, then you have to
enable the camera’s automatic settings in order to obtain a useable image.
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Fig. 2.13 The sensor consists of an array of interconnected cells. Each cell consists of a housing
which holds a filter, a sensor and an output. The filter controls which type of energy is allowed to
enter the sensor. The sensor measures the amount of energy as a voltage, which is converted into a
digital number through an analog-to-digital converter (ADC)

Fig. 2.14 The input image
was taken with the correct
amount of exposure. The
over- and underexposed
images are too bright and too
dark, respectively, which
makes it hard to see details in
them. If the object or camera
is moved during the exposure
time, it produces motion blur
as demonstrated in the last
image

Another aspect related to the exposure time is when the object of interest is in
motion. Here the exposure time in general needs to be low in order to avoid motion
blur, where light from a certain point on the object will be spread out over more
cells, see Fig. 2.14.

The accumulated charges are converted into digital form using an analog-to-
digital converter. This process takes the continuous world outside the camera and
converts it into a digital representation, which is required when stored in the com-
puter. Or in other words, this is where the image becomes digital. To fully compre-
hend the difference, have a look at Fig. 2.15.

To the left we see where the incident light hits the different cells and how many
times (the more times the brighter the value). This results in the shape of the object
and its intensity. Let us first consider the shape of the object. A cell is sensitive to
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Fig. 2.15 To the left the amount of light which hits each cell is shown. To the right the resulting
image of the measured light is shown

Fig. 2.16 The effect of spatial resolution. The spatial resolution is from left to right: 256 × 256,
64 × 64, and 16 × 16

incident light hitting the cell, but not sensitive to where exactly the light hits the
cell. So if the shape should be preserved, the size of the cells should be infinitely
small. From this it follows that the image will be infinitively large in both the x- and
y-direction. This is not tractable and therefore a cell, of course, has a finite size. This
leads to loss of data/precision and this process is termed spatial quantization. The
effect is the blocky shape of the object in the figure to the right. The number of pixels
used to represent an image is also called the spatial resolution of the image. A high
resolution means that a large number of pixels are used, resulting in fine details in
the image. A low resolution means that a relatively low number of pixels is used.
Sometimes the words fine and coarse resolution are used. The visual effect of the
spatial resolution can be seen in Fig. 2.16. Overall we have a trade-off between
memory and shape/detail preservation. It is possible to change the resolution of
an image by a process called image-resampling. This can be used to create a low
resolution image from a high resolution image. However, it is normally not possible
to create a high resolution image from a low resolution image.
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Fig. 2.17 The effect of gray-level resolution. The gray-level resolution is from left to right: 256,
16, and 4 gray levels

A similar situation is present for the representation of the amount of incident
light within a cell. The number of photons hitting a cell can be tremendously high
requiring an equally high digital number to represent this information. However,
since the human eye is not even close to being able to distinguish the exact number
of photons, we can quantify the number of photons hitting a cell. Often this quanti-
zation results in a representation of one byte (8 bits), since one byte corresponds to
the way memory is organized inside a computer (see Appendix A for an introduc-
tion to bits and bytes). In the case of 8-bit quantization, a charge of 0 volt will be
quantized to 0 and a high charge quantized to 255. Other gray-level quantizations
are sometimes used. The effect of changing the gray-level quantization (also called
the gray-level resolution) can be seen in Fig. 2.17. Down to 16 gray levels the image
will frequently still look realistic, but with a clearly visible quantization effect. The
gray-level resolution is usually specified in number of bits. While, typical gray-level
resolutions are 8-, 10-, and 12-bit corresponding to 256, 1024, and 4096 gray levels,
8-bit images are the most common and are the topic of this text.

In the case of an overexposed image, a number of cells might have charges above
the maximum measurable charge. These cells are all quantized to 255. There is no
way of knowing just how much incident light entered such a cell and we therefore
say that the cell is saturated. This situation should be avoided by setting the shutter
(and/or aperture), and saturated cells should be handled carefully in any video and
image processing system. When a cell is saturated it can affect the neighbor pixels
by increasing their charges. This is known as blooming and is yet another argument
for avoiding saturation.

2.4 The Digital Image

To transform the information from the sensor into an image, each cell content is
now converted into a pixel value in the range: [0,255]. Such a value is interpreted
as the amount of light hitting a cell during the exposure time. This is denoted the
intensity of a pixel. It is visualized as a shade of gray denoted a gray-scale value or
gray-level value ranging from black (0) to white (255), see Fig. 2.18.



20 2 Image Acquisition

Fig. 2.18 The relationship
between the intensity values
and the different shades of
gray

Fig. 2.19 Definition of the
image coordinate system

A gray-scale image (as opposed to a color image, which is the topic of Chap. 3)
is a 2D array of pixels (corresponding to the 2D array of cells in Fig. 2.13) each
having a number between 0 and 255. In this text the coordinate system of the image
is defined as illustrated in Fig. 2.19 and the image is represented as f (x, y), where
x is the horizontal position of the pixel and y the vertical position. For the small
image in Fig. 2.19, f (0,0) = 10, f (3,1) = 95 and f (2,3) = 19.

So whenever you see a gray-scale image you must remember that what you are
actually seeing is a 2D array of numbers as illustrated in Fig. 2.20.

2.4.1 The Region of Interest (ROI)

As digital cameras are sold in larger and larger numbers the development within
sensor technology has resulted in many new products including larger and larger
numbers of pixels within one sensor. This is normally defined as the size of the
image that can be captured by a sensor, i.e., the number of pixels in the vertical
direction multiplied by the number of pixels in the horizontal direction. Having a
large number of pixels can result in high quality images and has made, for example,
digital zoom a reality.

When it comes to image processing, a larger image size is not always a benefit.
Unless you are interested in tiny details or require very accurate measurements in
the image, you are better off using a smaller sized image. The reason being that
when we start to process images we have to process each pixel, i.e., perform some
math on each pixel. And, due to the large number of pixels, that quickly adds up
to quite a large number of mathematical operations, which in turn means a high
computational load on your computer.

Say you have an image which is 500 × 500 pixels. That means that you have
500 · 500 = 250,000 pixels. Now say that you are processing video with 50 images
per second. That means that you have to process 50 · 250,000 = 12,500,000 pixels
per second. Say that your algorithm requires 10 mathematical operations per pixel,
then in total your computer has to do 10 · 12,500,000 = 125,000,000 operations
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Fig. 2.20 A gray-scale image and part of the image described as a 2D array, where the cells
represent pixels and the value in a cell represents the intensity of that pixel

per second. That is quite a number even for today’s powerful computers. So when
you choose your camera do not make the mistake of thinking that bigger is always
better!

Besides picking a camera with a reasonable size you should also consider intro-
ducing a region-of-interest (ROI). An ROI is simply a region (normally a rectangle)
within the image which defines the pixels of interest. Those pixels not included in
the region are ignored altogether and less processing is therefore required. An ROI
is illustrated in Fig. 2.21.

The ROI can sometimes be defined for a camera, meaning that the camera only
captures those pixels within the region, but usually it is something you as a designer
define in software. Say that you have put up a camera in your home in order to
detect if someone comes through one of the windows while you are on holiday. You
could then define an ROI for each window seen in the image and only process these
pixels. When you start playing around with video and image processing you will
soon realize the need for an ROI.

2.5 Further Information

As hinted at in this chapter the camera and especially the optics are complicated
and much more information is required to comprehend those in-depth. While a full
understanding of the capturing process is mainly based on electrical engineering,
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Fig. 2.21 The white
rectangle defines a
region-of-interest (ROI), i.e.,
this part of the image is the
only one being processed

understanding optics requires a study on physics and how light interacts with the
physical world. A more easy way into these fields can be via the FCam [1], which
is a software platform for understanding and teaching different aspects of a camera.

Another way into these fields is to pick up a book on Machine Vision. Here you
will often find a practical approach to understanding the camera and guidelines on
picking the right camera and optics. Such books also contain practical information
on how to make your image/video analysis easier by introducing special lightning
etc.

While this chapter (and the rest of the book) focused solely on images formed by
visual light it should be mentioned that other wavelengths from the electromagnetic
spectrum can also be converted into digital images and processed by the methods
in the following chapters. Two examples are X-ray images and thermographic im-
ages, see Fig. 2.22. An X-ray image is formed by placing an object between an
X-ray emitter and an X-ray receiver. The receiver measures the energy level of the
X-rays at different positions. The energy level is proportional to the physical prop-
erties of the object, i.e., bones stop the X-rays while blood does not. Thermographic
images capture middle- or far-infrared rays. Heat is emitted from all objects via
such wavelengths meaning that the intensity in each pixel in a thermographic im-
age corresponds directly to the temperature of the observed object, see Fig. 2.22.
Other types of image not directly based on the electromagnetic spectrum can also
be captured and processed and in general all 2D signals that can be measured can be
represented as an image. Examples are MR and CT images known from hospitals,
and 3D (or depth) images obtained by a laser scanner, a time-of-flight camera or the
Kinect sensor developed for gaming, see Fig. 2.22.
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Fig. 2.22 Three different types of image. (a) X-ray image. Note the ring on the finger. (b) Ther-
mographic image. The more reddish the higher the temperature. (c) 3D image. The more blueish
the closer to the camera

2.6 Exercises

Exercise 1: Explain the following concepts: electromagnetic spectrum, focal
length, exposure time, backlighting, saturation, focus, depth-of-fields, motion blur,
spatial quantization, ROI.

Exercise 2: Explain the pros and cons of backlighting.
Exercise 3: Describe the image acquisition process. That is, from light to a digital

image in a computer.
Exercise 4: What is the purpose of the lens?
Exercise 5: What is the focal length and how does it relate to zoom?
Exercise 6: How many different 512 × 512 gray-scale (8-bit) images can be con-

structed?
Exercise 7: Which pixel value is represented by the following bit sequence:

00101010?
Exercise 8: What is the bit sequence of the pixel value: 150?
Exercise 9: In a 100 × 100 gray-scale image each pixel is represented by 256 gray

levels. How much memory (bytes) is required to store this image?
Exercise 10: In a 100 × 100 gray-scale image each pixel is represented by 4 gray
levels. How much memory (bytes) is required to store this image?

Exercise 11: You want to photograph an object, which is 1 m tall and 10 m away
from the camera. The height of the object in the image should be 1 mm. It is
assumed that the object is in focus at the focal point. What should the focal length
be?

Exercise 12a: Mick is 2 m tall and standing 5 m away from a camera. The focal
length of the camera is 5 mm. A focused image of Mick is formed on the sensor.
At which distance from the lens is the sensor located?

Exercise 12b: How tall (in mm) will Mick be on the sensor?
Exercise 12c: The camera sensor contains 640 × 480 pixels and its physical size is
6.4 mm × 4.8 mm. How tall (in pixels) will Mick be on the sensor?

Exercise 12d: What are the horizontal field-of-view and the vertical field-of-view
of the camera?
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Exercise 13: Show that 1
g

+ 1
b

= 1
f

.

Additional exercise 1: How does the human eye capture light and how does that
relate to the operations in a digital camera?

Additional exercise 2: How is auto-focus obtained in a digital camera?
Additional exercise 3: How is night vision obtained in for example binoculars and
riflescopes?
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So far we have restricted ourselves to gray-scale images, but, as you might have
noticed, the real world consists of colors. Going back some years, many cameras
(and displays, e.g., TV-monitors) only handled gray-scale images. As the technology
matured, it became possible to capture (and visualize) color images and today most
cameras capture color images.

In this chapter we turn to the topic of color images. We describe the nature of
color images and how they are captured and represented.

3.1 What Is a Color?

In Chap. 2 it was explained that an image is formed by measuring the amount of
energy entering the image sensor. It was also stated that only energy within a cer-
tain frequency/wavelength range is measured. This wavelength range is denoted the
visual spectrum, see Fig. 2.2. In the human eye this is done by the so-called rods,
which are specialized nerve-cells that act as photoreceptors. Besides the rods, the
human eye also contains cones. These operate like the rods, but are not sensitive
to all wavelengths in the visual spectrum. Instead, the eye contains three types of
cones, each sensitive to a different wavelength range. The human brain interprets
the output from these different cones as different colors as seen in Table 3.1 [4].

So, a color is defined by a certain wavelength in the electromagnetic spectrum as
illustrated in Fig. 3.1.

Since the three different types of cones exist we have the notion of the primary
colors being red, green and blue. Psycho-visual experiments have shown that the
different cones have different sensitivity. This means that when you see two differ-
ent colors with the same intensity, you will judge their brightness differently. On
average, a human perceives red as being 2.6 times as bright as blue and green as
being 5.6 times as bright as blue. Hence the eye is more sensitive to green and least
sensitive to blue.

When all wavelengths (all colors) are present at the same time, the eye perceives
this as a shade of gray, hence no color is seen! If the energy level increases the
shade becomes brighter and ultimately becomes white. Conversely, when the energy

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_3, © Springer-Verlag London Limited 2012
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Table 3.1 The different types of photoreceptor in the human eye. The cones are each specialized
to a certain wavelength range and peak response within the visual spectrum. The output from each
of the three types of cone is interpreted as a particular color by the human brain: red, green, and
blue, respectively. The rods measure the amount of energy in the visual spectrum, hence the shade
of gray. The type indicators L, M, S, are short for long, medium and short, respectively, and refer
to the wavelength

Photoreceptor cell Wavelength in
nanometers (nm)

Peak response in
nanometer (nm)

Interpretation by
the human brain

Cones (type L) [400–680] 564 Red

Cones (type M) [400–650] 534 Green

Cones (type S) [370–530] 420 Blue

Rods [400–600] 498 Shade of gray

Fig. 3.1 The relationship
between colors and
wavelengths

Fig. 3.2 Achromatic colors

level is decreased, the shade becomes darker and ultimately becomes black. This
continuum of different gray-levels (or shades of gray) is denoted the achromatic
colors and illustrated in Fig. 3.2. Note that this is the same as Fig. 2.18.

An image is created by sampling the incoming light. The colors of the incoming
light depend on the color of the light source illuminating the scene and the material
the object is made of, see Fig. 3.3. Some of the light that hits the object will bounce
right off and some will penetrate into the object. An amount of this light will be
absorbed by the object and an amount leaves again possibly with a different color. So
when you see a green car this means that the wavelengths of the main light reflected
from the car are in the range of the type M cones, see Table 3.1. If we assume the car
was illuminated by the sun, which emits all wavelengths, then we can reason that
all wavelengths except the green ones are absorbed by the material the car is made
of. Or in other words, if you are wearing a black shirt all wavelengths (energy) are
absorbed by the shirt and this is why it becomes hotter than a white shirt.

When the resulting color is created by illuminating an object by white light and
then absorbing some of the wavelengths (colors) we use the notion of subtractive
colors. Exactly as when you mix paint to create a color. Say you start with a white
piece of paper, where no light is absorbed. The resulting color will be white. If you
then want the paper to become green you add green paint, which absorbs every-
thing but the green wavelengths. If you add yet another color of paint, then more
wavelengths will be absorbed, and hence the resulting light will have a new color.
Keep doing this and you will in theory end up with a mixture where all wavelengths
are absorbed, that is, black. In practice, however, it will probably not be black, but
rather dark gray/brown.
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Fig. 3.3 The different
components influencing the
color of the received light

The opposite of subtractive colors is additive colors. This notion applies when
you create the wavelengths as opposed to manipulating white light. A good exam-
ple is a color monitor like a computer screen or a TV screen. Here each pixel is a
combination of emitted red, green and blue light. Meaning that a black pixel is gen-
erated by not emitting anything at all. White (or rather a shade of gray) is generated
by emitting the same amount of red, green, and blue. Red will be created by only
emitting red light etc. All other colors are created by a combination of red, green
and blue. For example yellow is created by emitting the same amount of red and
green, and no blue.

3.2 Representation of an RGB Color Image

A color camera is based on the same principle as the human eye. That is, it measures
the amount of incoming red light, green light and blue light, respectively. This is
done in one of two ways depending on the number of sensors in the camera. In the
case of three sensors, each sensor measures one of the three colors, respectively.
This is done by splitting the incoming light into the three wavelength ranges using
some optical filters and mirrors. So red light is only send to the “red-sensor” etc. The
result is three images each describing the amount of red, green and blue light per
pixel, respectively. In a color image, each pixel therefore consists of three values:
red, green and blue. The actual representation might be three images—one for each
color, as illustrated in Fig. 3.4, but it can also be a 3-dimensional vector for each
pixel, hence an image of vectors. Such a vector looks like this:

Color pixel = [Red,Green,Blue] = [R,G,B] (3.1)

In terms of programming a color pixel is usually represented as a struct. Say we
want to set the RGB values of the pixel at position (2,4) to: Red = 100, Green =
42, and Blue = 10, respectively. In C-code this can for example be written as

f [ 2 ] [ 4 ] . R = 1 0 0 ;
f [ 2 ] [ 4 ] . G = 4 2 ;
f [ 2 ] [ 4 ] . B = 1 0 ;
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Fig. 3.4 A color image
consisting of three images;
red, green and blue

respectively; or alternatively:

S e t P i x e l ( image , 2 , 4 , R , 1 0 0 ) ;
S e t P i x e l ( image , 2 , 4 , G, 4 2 ) } ;
S e t P i x e l ( image , 2 , 4 , B , 1 0 ) } ;

Typically each color value is represented by an 8-bit (one byte) value meaning
that 256 different shades of each color can be measured. Combining different values
of the three colors, each pixel can represent 2563 = 16,777,216 different colors.

A cheaper alternative to having three sensors including mirrors and optical filters
is to only have one sensor. In this case, each cell in the sensor is made sensitive to
one of the three colors (ranges of wavelength). This can be done in a number of
different ways. One is using a Bayer pattern. Here 50% of the cells are sensitive
to green, while the remaining cells are divided equally between red and blue. The
reason being, as mentioned above, that the human eye is more sensitive to green.
The layout of the different cells is illustrated in Fig. 3.5.

The figure shows the upper-left corner of the sensor, where the letters illustrate
which color a particular pixel is sensitive to. This means that each pixel only cap-
tures one color and that the two other colors of a particular pixel must be inferred
from the neighbors. Algorithms for finding the remaining colors of a pixel are known
as demosaicing and, generally speaking, the algorithms are characterized by the
required processing time (often directly proportional to the number of neighbors
included) and the quality of the output. The higher the processing time the better
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Fig. 3.5 The Bayer pattern
used for capturing a color
image on a single image
sensor. R = red, G = green,
and B = blue

Fig. 3.6 (a) Numbers
measured by the sensor.
(b) Estimated RGB image
using Eq. 3.2

the result. How to balance these two issues is up to the camera manufactures, and
in general, the higher the quality of the camera, the higher the cost. Even very ad-
vanced algorithms are not as good as a three sensor color camera and note that when
using, for example, a cheap web-camera, the quality of the colors might not be too
good and care should be taken before using the colors for any processing. Regard-
less of the choice of demosaicing algorithm, the output is the same as when using
three sensors, namely Eq. 3.1. That is, even though only one color is measured per
pixel, the output for each pixel will (after demosaicing) consist of three values: R,
G, and B.

An example of a simple demosaicing algorithm is to infer the missing colors
from the nearest pixels, for example using the following set of equations:

g(x, y)

⎧⎪⎪⎨
⎪⎪⎩

[R,G,B]B = [f (x + 1, y + 1), f (x + 1, y), f (x, y)]
[R,G,B]GB = [f (x, y + 1), f (x, y), f (x − 1, y)]
[R,G,B]GR = [f (x + 1, y), f (x, y), f (x, y − 1)]
[R,G,B]R = [f (x, y), f (x − 1, y), f (x − 1, y − 1)]

(3.2)

where f (x, y) is the input image (Bayer pattern) and g(x, y) is the output RGB
image. The RGB values in the output image are found differently depending on
which color a particular pixel is sensitive to: [R,G,B]B should be used for the
pixels sensitive to blue, [R,G,B]R should be used for the pixels sensitive to red,
and [R,G,B]GB and [R,G,B]GR should be used for the pixels sensitive to green
followed by a blue or red pixel, respectively.

In Fig. 3.6 a concrete example of this algorithm is illustrated. In the left figure
the values sampled from the sensor are shown. In the right figure the resulting RGB
output image is shown using Eq. 3.2.
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Fig. 3.7 (a) The RGB color cube. (b) The gray-vector in the RGB color cube

Table 3.2 The colors of the
different corners in the RGB
color cube

Corner Color

(0,0,0) Black

(255,0,0) Red

(0,255,0) Green

(0,0,255) Blue

(255,255,0) Yellow

(255,0,255) Magenta

(0,255,255) Cyan

(255,255,255) White

3.2.1 The RGB Color Space

According to Eq. 3.1 a color pixel has three values and can therefore be represented
as one point in a 3D space spanned by the three colors. If we say that each color
is represented by 8-bits, then we can construct the so-called RGB color cube, see
Fig. 3.7.

In the color cube a color pixel is one point or rather a vector from (0,0,0) to
the pixel value. The different corners in the color cube represent some of the pure
colors and are listed in Table 3.2. The vector from (0,0,0) to (255,255,255) passes
through all the gray-scale values and is denoted the gray-vector. Note that the gray-
vector is identical to Fig. 3.2.

3.2.2 Converting from RGB to Gray-Scale

Even though you use a color camera it might be sufficient for your algorithm to ap-
ply the intensity information in the image and you therefore need to convert the color
image into a gray-scale image. Converting from RGB to gray-scale is performed as

I = WR · R + WG · G + WB · B (3.3)
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Fig. 3.8 A color image and how it can be mapped to different gray-scale images depending on the
weights

where I is the intensity and WR , WG, and WB are weight factors for R, G, and
B, respectively. To ensure the value of Eq. 3.3 is within one byte, i.e. in the range
[0,255], the weight factors must sum to one. That is WR +WG +WB = 1. As default
the three colors are equally important, hence WR = WG = WB = 1

3 , but depending
on the application one or two colors might be more important and the weight factors
should be set accordingly. For example when processing images of vegetation the
green color typically contains the most information or when processing images of
metal objects the most information is typically located in the blue pixels. Yet another
example could be when looking for human skin (face and hands) which has a reddish
color. In general, the weights should be set according to your application and a good
way of assessing this is by looking at the histograms of each color.1 An example of a
color image transformed into a gray-scale image can be seen in Fig. 3.8. Generally,
it is not possible to convert a gray-scale image back into the original color image,
since the color information is lost during the color to gray-scale transformation.

When the goal of a conversion from color to gray-scale is not to prepare the
image for processing but rather for visualization purposes, then an understanding of
the human visual perception can help decide the weight factors. The optimal weights
vary from individual to individual, but the weights listed below are a good compro-
mise, agreed upon by major international standardization organizations within TV
and image/video coding. When the weights are optimized for the human visual sys-
tem, the resulting gray-scale value is denoted luminance and usually represented
as Y .

WR = 0.299, WG = 0.587, WB = 0.114 (3.4)

1An image histogram is defined in the next chapter.
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Fig. 3.9 The RGB color
cube. Each dot corresponds to
a particular pixel value.
Multiple dots on the same
line all have the same color,
but different levels of
illumination

Fig. 3.10 (a) The triangle
where all color vectors pass
through. The value of a point
on the triangle is defined
using normalized RGB
coordinates. (b) The
chromaticity plane

3.2.3 The Normalized RGB Color Representation

If we have the following three RGB pixel values (0,50,0), (0,100,0), and
(0,223,0) in the RGB color cube, we can see that they all lie on the same vec-
tor, namely the one spanned by (0,0,0) and (0,255,0). We say that all values are a
shade of green and go even further and say that they all have the same color (green),
but different levels of illumination. This also applies to the rest of the color cube.
For example, the points (40,20,50), (100,50,125) and (200,100,250) all lie on
the same vector and therefore have the same color, but just different illumination
levels. This is illustrated in Fig. 3.9.

If we generalize this idea of different points on the same line having the same
color, then we can see that all possible lines pass through the triangle defined by
the points (1,0,0), (0,1,0) and (0,0,1), see Fig. 3.10(a). The actual point (r, g, b)

where a line intersects the triangle is found as2:

(r, g, b) =
(

R

R + G + B
,

G

R + G + B
,

B

R + G + B

)
(3.5)

These values are named normalized RGB and denoted (r, g, b). In Table 3.3 the
rgb values of some RGB values are shown. Note that each value is in the interval
[0,1] and that r + g + b = 1. This means that if we know two of the normalized

2Note that the formula is undefined for (R,G,B) = (0,0,0). We therefore make the following
definition: (r, g, b) ≡ (0,0,0) when (R,G,B) = (0,0,0).
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RGB values, then we can easily find the remaining value, or in other words, we can
represent a normalized RGB color using just two of the values. Say we choose r and
g, then this corresponds to representing the triangle in Fig. 3.10(a) by the triangle
to the right, see Fig. 3.10(b). This triangle is denoted the chromaticity plane and the
colors along the edges of the triangle are the so-called pure colors. The further away
from the edges the less pure the color and ultimately the center of the triangle has
no color at all and is a shade of gray. It can be stated that the closer to the center a
color is, the more “polluted” a pure color is by white light.

Summing up we can now re-represent an RGB value by its “true” color, r and g,
and the amount of light (intensity or energy or illumination) in the pixel. That is,

(R,G,B) ⇔ (r, g, I ) (3.6)

where I = R+G+B
3 . In Table 3.3 the rgI values of some RGB values are shown.3

Separating the color and the intensity like this can be a powerful notion in many
applications. In Sect. 4.4.1 one will be presented.

In terms of programming the conversion from (R,G,B) to (r, g, I ) can be im-
plemented in C-Code as illustrated below:

f o r ( y = 0 ; y < M; y = y +1)
{

f o r ( x = 0 ; x < N; x = x +1)
{

temp = G e t P i x e l ( i n p u t , x , y , R) +
G e t P i x e l ( i n p u t , x , y , G) +
G e t P i x e l ( i n p u t , x , y , B ) ;

v a l u e = G e t P i x e l ( i n p u t , x , y , R) / temp ;
S e t P i x e l ( o u t p u t , x , y , r , v a l u e ) ;
v a l u e = G e t P i x e l ( i n p u t , x , y , G) / temp ;
S e t P i x e l ( o u t p u t , x , y , g , v a l u e ) ;
v a l u e = temp / 3 ;
S e t P i x e l ( o u t p u t , x , y , I , v a l u e ) ;

}
}

where M is the height of the image, N is the width of the image, input is the RGB
image, and output is the rgI image. The programming example primarily consists
of two FOR-loops which go through the image, pixel-by-pixel, and convert from an
input image (RGB) to an output image (rgI). The opposite conversion from (r, g, I )

to (R,G,B) can be implemented as

3If r and g need to be represented using one byte for each color we can simply multiply each with
255 and the new values will be in the interval [0,255].
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f o r ( y = 0 ; y < M; y = y +1)
{

f o r ( x = 0 ; x < N; x = x +1)
{

temp = 3 ∗ G e t P i x e l ( i n p u t , x , y , I ) ;
v a l u e = G e t P i x e l ( i n p u t , x , y , r ) ∗ temp ;
S e t P i x e l ( o u t p u t , x , y , R , v a l u e ) ;
v a l u e = G e t P i x e l ( i n p u t , x , y , g ) ∗ temp ;
S e t P i x e l ( o u t p u t , x , y , G, v a l u e ) ;
v a l u e = (1 − G e t P i x e l ( i n p u t , x , y , r ) −

G e t P i x e l ( i n p u t , x , y , g ) ) ∗ temp ;
S e t P i x e l ( o u t p u t , x , y , B , v a l u e ) ;

}
}

where M is the height of the image, N is the width of the image, input is the rgI
image, and output is the RGB image.

3.3 Other Color Representations

From a human perception point of view the triangular representation in 3.10(b) is
not intuitive. Instead humans rather use the notion of hue and saturation, when
perceiving colors. The hue is the dominant wavelength in the perceived light and
represents the pure color, i.e., the colors located on the edges of the triangle in
Fig. 3.10(b). The saturation is the purity of the color and represents the amount of
white light mixed with the pure color. To understand these entities better, let us look
at Fig. 3.11(a). First of all we see that the point C corresponds to the neutral point,
meaning the colorless center of the triangle where (r, g) = (1/3,1/3). Let us define
a random point in the triangle as P . The hue of this point is now defined as an angle,
θ , between the vectors

−−→
Cr=1 and

−→
CP . So hue = 0° means red and hue = 120° means

green.
If the point P is located on the edge of the triangle then we say the saturation

is 1, hence a pure color. As the point approaches C the saturation goes toward 0,
and ultimately becomes 0 when P = C. Since the distance from C to the three
edges of the triangle is not uniform, the saturation is defined as a relative distance.
That is, saturation is defined as the ratio between the distance from C to P , and
the distance from C to the point on the edge of the triangle in the direction of

−→
CP .

Mathematically we have

Saturation = ‖−→CP ‖
‖−−→CP ′‖

, Hue = θ (3.7)

where ‖−→CP‖ is the length of the vector
−→
CP . The representation of colors based

on hue and saturation results in a circle as opposed to the triangle in Fig. 3.10(b).
In Fig. 3.11(b) the hue–saturation representation is illustrated together with some of
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Fig. 3.11 (a) The definition
of hue and saturation. (b) The
hue–saturation representation.
The color of a pixel (indicated
by a dot) is represented by a
hue value and a saturation
value (denoted S in the
figure). The figure also
indicates the location of some
of the pure colors

the pure colors. It is important to realize how this figure relates to Fig. 3.7, or in other
words, how the hue–saturation representation relates to the RGB representation. The
center of the hue–saturation circle in Fig. 3.11(b) is a shade of gray and corresponds
to the gray-vector in Fig. 3.7. The circle is located so that it is perpendicular to
the gray-vector. For a particular RGB value, the hue–saturation circle is therefore
centered at a position on the gray-vector, so that the RGB value is included in the
circle.

A number of different color representations exist, which are based on the notion
of hue and saturation. Below two of these are presented.4

3.3.1 The HSI Color Representation

The HSI color representation is short for hue, saturation and intensity. The represen-
tation follows the exact definition mentioned above. That is, the intensity is defined
as I = R+G+B

3 and hue and saturation is defined as illustrated in Fig. 3.11. When
calculating the conversion from RGB to HSI we seek a way of avoiding fist con-
verting from RGB to rg, i.e., we want to represent the conversion in terms of RGB
values. In Appendix D it is shown how this is possible and the resulting conversion
from RGB to HSI is defined as

H =
⎧⎨
⎩

cos−1
(
1/2 · (R−G)+(R−B)√

(R−G)(R−G)+(R−B)(G−B)

)
, if G ≥ B;

360° − cos−1
(
1/2 · (R−G)+(R−B)√

(R−G)(R−G)+(R−B)(G−B)

)
, Otherwise

(3.8)

H ∈ [0,360[
S = 1 − 3 · min{R,G,B}

R + G + B
S ∈ [0,1] (3.9)

I = R + G + B

3
I ∈ [0,255] (3.10)

4It should be noted that the naming of the different color representations based on hue and satu-
ration is not consistent throughout the body of literature covering this subject. Please have this in
mind when studying other information sources.
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where min{R,G,B} means the smallest of the R, G, and B values, see Appendix B.
Saturation is defined to be zero when (R,G,B) = (0,0,0) and hue is undefined for
gray-values, i.e., when R = G = B . The conversion from HSI to RGB is given as

Hn =
⎧⎨
⎩

0, if 0° ≤ H ≤ 120°;

H − 120°, if 120° < H ≤ 240°;

H − 240°, if 240° < H < 360°

(3.11)

R =

⎧⎪⎨
⎪⎩

I · (1 + S·cos(Hn)

cos(60°−Hn)

)
, if 0° ≤ H ≤ 120°;

I − I · S, if 120° < H ≤ 240°;

3I − G − B, if 240° < H < 360°

(3.12)

G =
⎧⎨
⎩

3I − R − B, if 0° ≤ H ≤ 120°;

I · (1 + S·cos(Hn)

cos(60°−Hn)

)
, if 120° < H ≤ 240°;

I − I · S, if 240° < H < 360°

(3.13)

B =

⎧⎪⎨
⎪⎩

I − I · S, if 0° ≤ H ≤ 120°;

3I − R − G, if 120° < H ≤ 240°;

I · (1 + S·cos(Hn)

cos(60°−Hn)

)
, if 240° < H < 360°

(3.14)

In Table 3.3 the HSI values of some RGB pixels are shown.5

3.3.2 The HSV Color Representation

The HSV color representation is short for hue, saturation and value. One can think
of HSV as an approximation of HSI, but much simpler to calculate. This is true,
but it is important to notice that HSV is not defined to be an approximation of HSI.
It is rather defined from an artist’s point of view. Consider the situation when an
artist mixes paint. She would choose a pure color and lighten it by adding white
or darkening it by adding black. In the HSV representation the actions of the artist
are modeled in the following way. The pure color obviously corresponds to hue.
Increasing the whiteness (by adding white) corresponds to lowing the saturation.
Finally, increasing the amount of black corresponds to lowering the intensity of R,
G, and B. Concretely, this is modeled by the intensity of the maximum color and
denoted value, i.e., value = max{R,G,B}.

Following these definitions, a very elegant geometric argument can be made lead-
ing to a computationally simpler representation of hue, saturation, and value, than
HSI. The conversion from RGB to HSV is given as (see Appendix E for details):

5Note that sometimes all parameters are normalized to the interval [0,1]. For example for H this
is done as Hnormalized = H

360 .
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H =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

G−B
V −min{R,G,B} · 60°, if V = R and G ≥ B;(

B−R
V −min{R,G,B} + 2

) · 60°, if G = V ;(
R−G

V −min{R,G,B} + 4
) · 60°, if B = V ;(

R−B
V −min{R,G,B} + 5

) · 60°, if V = R and G < B

H ∈ [0°,360°[

(3.15)

S = V − min{R,G,B}
V

S ∈ [0,1] (3.16)

V = max{R,G,B} V ∈ [0,255] (3.17)

where min{R,G,B} and max{R,G,B} are the smallest and biggest of the R, G,
and B values, respectively, see Appendix B. As for HSI saturation is defined to be
zero when (R,G,B) = (0,0,0) and hue is undefined for gray-values, i.e., when
R = G = B . The conversion from HSV to RGB is given as

K =
⌊

H

60°

⌋
(3.18)

T = H

60°
− K (3.19)

X = V · (1 − S) (3.20)

Y = V · (1 − S · T ) (3.21)

Z = V · (1 − S · (1 − T )
)

(3.22)

(R,G,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(V ,Z,X), if K = 0;

(Y,V,X), if K = 1;

(X,V,Z), if K = 2;

(X,Y,V ), if K = 3;

(Z,X,V ), if K = 4;

(V ,X,Y ), if K = 5

(3.23)

where �x
 means the floor of x, see Appendix B. In Table 3.3 the HSV values of
some RGB colors are shown.

3.3.3 The YUV and YCbCr Color Representations

A number of other color representations exist, but those mentioned above are those
most often applied in image processing. One exception, however, is the color rep-
resentations used for transmission, storage, and compression of image and video.
These representations all have a similar structure, which is presented in this section.

In the early days of TV only monochrome screens were available and hence only
intensity information was transmitted from the TV stations. RGB cameras captured
RGB signals, but converted them into luminance values, denoted Y , before transmit-



3.3 Other Color Representations 39

ting them. Knowledge of human perception was taken into account when defining
the weights used for the conversion, see Sect. 3.2.2:

Y = WR · R + WG · G + WB · B Y ∈ [0,255] (3.24)

where WR + WG + WB = 1.
As the color screen technology matured, a need for transmitting color signals

arose. Two requirements were set up when defining how to transmit color sig-
nals: 1) The signal should be compatible with the already existing signals used for
monochrome screens and 2) the decoding on the receiver side should be as sim-
ple as possible. From this it followed that the color information was transmitted as
weighted difference signals with respect to Y :

X1 = WX1

1 − WB

· (B − Y) X1 ∈ [−WX1 · 255,WX1 · 255] (3.25)

X2 = WX2

1 − WR

· (R − Y) X2 ∈ [−WX2 · 255,WX2 · 255] (3.26)

where WX1 and WX2 are weight factors, WR and WB are from Eq. 3.24, and X1
and X2 encode the blue and red information, respectively. The green information
can then be inferred from Y , X1 and X2. Note that when no color is present, i.e.
R = G = B , we have X1 = 0 and X2 = 0, see Appendix F. This means that X1 and
X2 need not be send.

So, by transmitting (Y,X1,X2) a monochrome receiver can simply show Y ,
while a color receiver can decode (R,G,B) and show a color signal using the fol-
lowing equations, see Appendix F for details:

R = Y + X2 · 1 − WR

WX2
(3.27)

G = Y − X1 · WB · (1 − WB)

WX1 · WG

− X2 · WR · (1 − WR)

WX2 · WG

(3.28)

B = Y + X1 · 1 − WB

WX1
(3.29)

Note that since all the weights are known in advance the conversion becomes rather
simple.

One of the most well known color spaces using this principle is the YUV color
space. The YUV color space is for example used in most European TV transmission
standards. YUV uses the weights: WR = 0.299, WG = 0.587, WB = 0.114, WX1 =
0.436, and WX2 = 0.615, and has the conversion listed below, see Appendix F for
details. In Table 3.3 the YUV values of some RGB values are shown.

⎡
⎣ Y

U

V

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114

−0.147 −0.289 0.436
0.615 −0.515 −0.100

⎤
⎦ ·

⎡
⎣R

G

B

⎤
⎦ Y ∈ [0,255]

U ∈ [−111,111]
V ∈ [−157,157]

(3.30)
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⎡
⎣R

G

B

⎤
⎦ =

⎡
⎣1.000 0.000 1.140

1.000 −0.395 −0.581
1.000 2.032 0.000

⎤
⎦ ·

⎡
⎣ Y

U

V

⎤
⎦ R ∈ [0,255]

G ∈ [0,255]
B ∈ [0,255]

(3.31)

Another well know color space using this principle is the YCbCr color space,
which is used in for example JPEG and MPEG. YCbCr uses the weights: WR =
0.299, WG = 0.587, WB = 0.114, WX1 = 0.5, and WX2 = 0.5, and has the conver-
sions listed below. See Appendix F for details.

⎡
⎣ Y

Cb

Cr

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114

−0.169 −0.331 0.500
0.500 −0.419 −0.081

⎤
⎦ ·

⎡
⎣R

G

B

⎤
⎦ +

⎡
⎣ 0

128
128

⎤
⎦ Y ∈ [0,255]

Cb ∈ [0,255]
Cr ∈ [0,255]

(3.32)

⎡
⎣R

G

B

⎤
⎦ =

⎡
⎣1.000 0.000 1.403

1.000 −0.344 −0.714
1.000 1.773 0.000

⎤
⎦ ·

⎡
⎣ Y

Cb − 128
Cr − 128

⎤
⎦ R ∈ [0,255]

G ∈ [0,255]
B ∈ [0,255]

(3.33)

Note that 128 is added/subtracted in order to bring the values into the range [0,255].
Note also the simplicity of the conversions compared to those for HSI and HSV. In
Table 3.3 the YCbCr values of some RGB values are shown.

3.4 Further Information

When reading literature on color spaces and color processing it is important to re-
alize that a number of different terms are used.6 Unfortunately, some of these terms
are used interchangeably even though they might have different physical/perceptu-
al/technical meanings. We therefore give a guideline to some of the terms you are
likely to encounter when reading literature on colors:
Chromatic Color All colors in the RGB color cube except those lying on the gray-
line spanned by (0,0,0) and (255,255,255).

Achromatic Color The colorless values in the RGB cube, i.e., all those colors lying
on the gray-line. The opposite of chromatic color.

Shades of gray The same as achromatic color.
Intensity The average amount of energy, i.e., (R + G + B)/3.
Brightness The amount of light perceived by a human.
Lightness The amount of light perceived by a human.
Luminance The amount of light perceived by a human. Note that when you ven-

ture into the science of color understanding, the luminance defines the amount of
emitted light.

Luma Gamma-corrected luminance.

6When going into color perception and color understanding even more terms are added to the
vocabulary.
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Fig. 3.12 Examples of pseudo color mapping

Shade Darkening a color. When a subtractive color space is applied, different
shades (darker nuances) of a color are obtained by mixing the color with differ-
ent amounts of black.

Tint Lightening a color. When a subtractive color space is applied, different tints
(lighter nuances) of a color are obtained by mixing the color with different amounts
of white.

Tone A combination of shade and tint, where gray is mixed with the input color.
’(denoted prime) The primed version of a color, i.e., R’, means that the value has
been gamma-corrected.

Sometimes a gray-scale image is mapped to a color image in order to enhance
some aspect of the image. As mentioned above a true color image cannot be recon-
structed from a gray-level image. We therefore use the term pseudo color to under-
line that we are not talking about a true RGB image. How to map from gray-scale to
color can be done in many different ways. In Fig. 3.12 and Fig. 2.22 examples are
illustrated.
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Fig. 3.13 A color image
captured by a Bayer pattern

3.5 Exercises

Exercise 1: Explain the following concepts: rods, cones, achromatic, chromaticity
plane, additive colors, subtractive colors, color spaces.

Exercise 2: How many different 512 × 512 color (24-bit) images can be con-
structed?

Exercise 3: The image in Fig. 3.13 was captured by a Bayer pattern sensor. Use
demosaicing to convert the image into an RGB image.

Exercise 4: An RGB image is converted into a gray-scale image so that the cyan
color is enhanced. What are the weight factors for R, G, and B, respectively?

Exercise 5: Is the RGB pixel (R,G,B) = (42,42,42) located on the gray-vector?
Exercise 6: An RGB image is converted into a gray-scale image. During the con-

version WB = 0 and the two remaining colors are weighted equally. A pixel in the
gray-scale image has the value 100. How much green was present in the corre-
sponding RGB pixel when we know that R = 20?

Exercise 7: Convert the RGB pixel (R,G,B) = (20,40,60) into (r, g, b), (r, g, I ),
(H,S, I ), (H,S,V ), (Y,U,V ), and (Y,Cb,Cr), respectively.

Exercise 8: Show that r + g + b = 1.
Additional exercise 1: How is color represented in HTML?
Additional exercise 2: What is the “red-eye effect” in pictures and what can be
done about it?

Additional exercise 3: What is white balance?
Additional exercise 4: What is color blindness?
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Sometimes when people make a movie they lower the overall intensity in order to
create a special atmosphere. Some overdo this and the result is that the viewer cannot
see anything except darkness. What do you do? You pick up your remote and adjust
the level of the light by pushing the brightness button. When doing so you actually
perform a special type of image processing known as point processing.

Say we have an input image f (x, y) and wish to manipulate it resulting in a dif-
ferent image, denoted the output image g(x, y). In the case of changing the bright-
ness in a movie, the input image will be the one stored on the DVD you are watching
and the output image will be the one actually shown on the TV screen. Point pro-
cessing is now defined as an operation which calculates the new value of a pixel in
g(x, y) based on the value of the pixel in the same position in f (x, y) and some
operation. That is, the values of a pixel’s neighbors in f (x, y) have no effect what-
soever, hence the name point processing. In the forthcoming chapters the neighbor
pixels will play an important role. The principle of point processing is illustrated in
Fig. 4.1. In this chapter some of the most fundamental point processing operations
are described.

4.1 Gray-Level Mapping

When manipulating the brightness by your remote you actually change the value of
b in the following equation:

g(x, y) = f (x, y) + b (4.1)

Every time you push the ‘+’ brightness button the value of b is increased and vice
versa. The result of increasing b is that a higher and higher value is added to each
pixel in the input image and hence it becomes brighter. If b > 0 the image becomes
brighter and if b < 0 the image becomes darker. The effect of changing the bright-
ness is illustrated in Fig. 4.2.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_4, © Springer-Verlag London Limited 2012
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Fig. 4.1 The principle of point processing. A pixel in the input image is processed and the result
is stored at the same position in the output image

Fig. 4.2 If b in Eq. 4.1 is zero, the resulting image will be equal to the input image. If b is a
negative number, then the resulting image will have decreased brightness, and if b is a positive
number the resulting image will have increased brightness

An often more convenient way of expressing the brightness operation is by the
use of a graph, see Fig. 4.3. The graph shows how a pixel value in the input im-
age (horizontal axis) maps to a pixel value in the output image (vertical axis). Such
a graph is denoted gray-level mapping. In the first graph, the mapping does ab-
solutely nothing, i.e., g(142,42) = f (142,42). In the next graph all pixel values
are increased (b > 0), hence the image becomes brighter. This results in two things:
i) no pixel will be completely dark in the output and ii) some pixels will have a value
above 255 in the output image. The latter is no good due to the upper limit of an
8-bit image and therefore all pixels above 255 are set equal to 255 as illustrated by
the horizontal part of the graph. When b < 0 some pixels will have negative values
and are therefore set equal to zero in the output as seen in the last graph.

Just like changing the brightness on your TV, you can also change the contrast.
The contrast of an image is a matter of how different the gray-level values are. If we
look at two pixels next to each other with values 112 and 114, then the human eye
has difficulties distinguishing them and we will say there is a low contrast. On the
other hand if the pixels are 112 and 212, respectively, then we can easily distinguish



4.1 Gray-Level Mapping 45

Fig. 4.3 Three examples of gray-level mapping. The top image is the input. The three other images
are the result of applying the three gray-level mappings to the input. All three gray-level mappings
are based on Eq. 4.1

Fig. 4.4 If a in Eq. 4.2 is one, the resulting image will be equal to the input image. If a is smaller
than one then the resulting image will have decreased contrast, and if a is higher than one then the
resulting image will have increased contrast

them and we will say the contrast is high. The contrast of an image is changed by
changing the slope of the graph1:

1In practice the line is not rotated around (0,0) but rather around the center point (127,127), hence
b = 127(1 − a). However, for the discussion here it suffice to say that b = 0 and only look at the
slope.
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g(x, y) = a · f (x, y) (4.2)

If a > 1 the contrast is increased and if a < 1 the contrast is decreased. For exam-
ple when a = 2 the pixels 112 and 114 will get the values 224 and 228, respectively.
The difference between them is increased by a factor 2 and the contrast is therefore
increased. In Fig. 4.4 the effect of changing the contrast can be seen.

If we combine the equations for brightness, Eq. 4.1, and contrast, Eq. 4.2, we
have

g(x, y) = a · f (x, y) + b (4.3)

which is the equation of a straight line. Let us look at an example of how to apply
this equation. Say we are interested in a certain part of the input image where the
contrast might not be sufficient. We therefore find the range of the pixels in this part
of the image and map them to the entire range, [0,255] in the output image. Say
that the minimum pixel value and maximum pixel values in the input image are 100
and 150, respectively. Changing the contrast then means to say that all pixel value
below 100 are set to zero in the output and all pixel values above 150 are set to 255
in the output image. The pixels in the range [100,150] are then mapped to [0,255]
using Eq. 4.3 where a and b are defined as follows:

a = 255

f2 − f1
, b = −a · f1 (4.4)

where f1 = 100 and f2 = 150.

4.2 Non-linear Gray-Level Mapping

Gray-level mapping is not limited to linear mappings as defined by Eq. 4.3. In fact
the designer is free to define the gray-level mapping as she pleases as long as there
is one and only one output value for each input value. Often the designer will utilize
a well defined equation/graph as opposed to defining a new one. Below three of the
most common non-linear mapping functions are presented.

4.2.1 Gamma Mapping

In many cameras and display devices (flat panel televisions for example) it is use-
ful to be able to increase or decrease the contrast in the dark gray levels and the
light gray levels individually since humans have a non-linear perception of contrast.
A commonly used non-linear mapping is gamma mapping, which is defined for
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Fig. 4.5 Gamma-mapping
curves for different gammas

positive γ as

g(x, y) = f (x, y)γ (4.5)

Some gamma-mapping curves are illustrated in Fig. 4.5. For γ = 1 we get the iden-
tity mapping. For 0 < γ < 1 we increase the dynamics in the dark areas by in-
creasing the mid-levels. For γ > 1 we increase the dynamics in the bright areas by
decreasing the mid-levels. The gamma mapping is defined so that the input and out-
put pixel values are in the range [0,1]. It is therefore necessary to first transform the
input pixel values by dividing each pixel value with 255 before the gamma trans-
formation. The output values should also be scaled from [0,1] to [0,255] after the
gamma transformation.

A concrete example is given. A pixel in a gray-scale image with value vin = 120
is gamma mapped with γ = 2.22. Initially, the pixel value is transformed into the
interval [0,1] by dividing with 255, v1 = 120/255 = 0.4706. Secondly, the gamma
mapping is performed v2 = 0.47062.22 = 0.1876. Finally, it is mapped back to the
interval [0,255] giving the result vout = 0.1876 · 255 = 47. Examples are illustrated
in Fig. 4.6.

Fig. 4.6 Gamma mapping to the left with γ = 0.45 and to the right with γ = 2.22. In the middle
the original image
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4.2.2 Logarithmic Mapping

An alternative non-linear mapping is based on the logarithm operator. Each pixel is
replaced by the logarithm of the pixel value. This has the effect that low intensity
pixel values are enhanced. It is often used in cases where the dynamic range of the
image is too great to be displayed or in images where there are a few very bright
spots on a darker background. Since the logarithm is not defined for 0, the mapping
is defined as

g(x, y) = c · log
(
1 + f (x, y)

)
(4.6)

where c is a scaling constant that ensures that the maximum output value is 255. It
is calculated as

c = 255

log(1 + vmax)
(4.7)

where vmax is the maximum pixel value in the input image.
The behavior of the logarithmic mapping can be controlled by changing the pixel

values of the input image using a linear mapping before the logarithmic mapping.
The logarithmic mapping from the interval [0,255] to [0,255] is seen in Fig. 4.7.
This mapping will clearly stretch the low intensity pixels while suppressing the
contrast in high intensity pixels. An example is illustrated in Fig. 4.7.

4.2.3 Exponential Mapping

The exponential mapping uses a part of the exponential curve. It can be expressed
as

g(x, y) = c · (kf (x,y) − 1
)

(4.8)

where k is a parameter that can be used to change of shape of the transformation
curve and c is a scaling constant that ensures that the maximum output value is 255.
It is calculated as

c = 255

kvmax − 1
(4.9)

where vmax is the maximum pixel value in the input image. k is normally chosen as
a number just above 1. This will enhance details in the bright areas while decreasing
detail in the dark areas. An example is illustrated in Fig. 4.7.

Please note that both linear and non-linear gray-level mapping can also be applied
to color images. This is simply done by performing gray-level mapping on each of
the three color channels.
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Fig. 4.7 Examples of logarithmic and exponential gray-level mappings. Logarithmic mapping is
useful for bringing out details in dark images and exponential mapping is useful for bringing out
details in bright images

4.3 The Image Histogram

So now we know how to correct images using gray-level mapping, but how can we
tell if an image is too dark or too bright?

The obvious answer is that we can simply look at the image. But we would like
a more objective way of answering this question. Moreover, we are also interested
in a method enabling a computer to automatically assess whether an image is too
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Fig. 4.8 A histogram showing the age distribution of the guests at a party. The horizontal axis
represents age and the vertical axis represents the number of guests

dark, too bright or has too low a contrast, and automatically correct the image using
gray-level mapping. To this end we introduce a simple but powerful tool namely the
image histogram. Everybody processing images should always look at the histogram
of an image before processing it—and so should you!

A histogram is a graphical representation of the frequency of events. Say you are
at a party together with 85 other guests. You could then ask the age of each person
and plot the result in a histogram, as illustrated in Fig. 4.8. The horizontal axis repre-
sents the possible ages and the vertical axis represents the number of people having
a certain age. Each column is denoted a bin and the height of a bin corresponds to
the number of guests having this particular age. This plot is the histogram of the age
distribution among the guests at the party. If you divide each bin with the total num-
ber of samples (number of guests) each bin now represents the fraction of guests
having a certain age—multiply by 100% and you have the numbers in percentages.
We can for example see that 11.6% of the guests are 25 years old. In the rest of this
book we will denote the vertical axis in a histogram by frequency, i.e., the number
of samples.

We now do exactly the same for the pixel values of an image. That is, we go
through the entire image pixel-by-pixel and count how many pixels have the value
0, how many have the value 1, and so on up to 255. This results in a histogram with
256 bins and this is the image histogram.

If the majority of the pixels in an image have low values we will see this as most
high bins being to the left in the histogram and can thus conclude that the image is
dark. If most high bins are to the right in the histogram, the image will be bright. If
the bins are spread out equally, the image will have a good contrast and vice versa.
See Fig. 4.9.

Note that when calculating an image histogram the actual position of the pixels
is not used. This means i) that many images have the same histogram and ii) that
an image cannot be reconstructed from the histogram. In Fig. 4.10 four images with
the same histogram are shown.

We can of course also calculate the histogram of a color image. This is done
separately for each color channel. An example is shown in Fig. 4.11.
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Fig. 4.9 Four images and their respective histograms

Fig. 4.10 Four images with the exact same histogram

4.3.1 Histogram Stretching

Armed with this new tool we now seek a method to automatically correct the image
so that it is neither too bright nor too dark and does not have too low contrast. In
terms of histograms, this means that the histogram should start at 0 and end at 255.
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Fig. 4.11 The histograms of a color image

Fig. 4.12 The concept of histogram stretching

We obtain this by mapping the left-most non-zero bin in the histogram to 0 and the
right-most non-zero bin to 255, see Fig. 4.12.

We can see that the histogram has been stretched so that the very dark and very
bright values are now used. It should also be noted that the distance between the
different bins is increased, hence the contrast is improved. This operation is denoted
histogram stretching and the algorithm is exactly the same as Eq. 4.3 with a and b

defined as in Eq. 4.4. f1 is the left-most non-zero bin in the histogram and f2 is the
right-most non-zero bin in the histogram of the input image.
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Fig. 4.13 An example of histogram stretching

Conceptually it might be easier to appreciate the equation if we rearrange Eq. 4.3:

g(x, y) = 255

f2 − f1
· f (x, y) − f1 · a ⇔ (4.10)

g(x, y) = 255

f2 − f1
· (f (x, y) − f1

)
(4.11)

First the histogram is shifted left so that f1 is located at 0. Then each value is
multiplied by a factor a so that the maximum value f2 − f1 becomes equal to 255.
In Fig. 4.13 an example of histogram stretching is illustrated.

If just one pixel has the value 0 and another 255, histogram stretching will not
work, since f2 −f1 = 255. A solution is modified histogram stretching where small
bins in the histogram are removed by changing their values to those of larger bins.
But if a significant number of pixels with very small and very high values exit, we
still have f2 −f1 = 255, and hence the histogram (and image) remains the same, see
Fig. 4.15. A more robust method to improve the histogram (and image) is therefore
to apply histogram equalization.

4.3.2 Histogram Equalization

Histogram equalization is based on non-linear gray-level mapping using a cumula-
tive histogram.
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Table 4.1 A small histogram and its cumulative histogram. i is the bin number,
H [i] the height of bin i, and C[i] is the height of the ith bin in the cumulative
histogram

i 0 1 2 3

H [i] 1 5 0 7

C[i] 1 6 6 13

Fig. 4.14 An example of a
cumulative histogram. Notice
how the tall bins in the
ordinary histogram translate
into steep slopes in the
cumulative histogram

Imagine we have a histogram H [i] where i is a bin number (between 0 and 255)
and H [i] is the height of bin i. The cumulative histogram is then defined as

C[j ] =
j∑

i=0

H [i] (4.12)

In Table 4.1 a small example is provided.
In Fig. 4.14 a histogram is shown together with its cumulative histogram. Where

the histogram has high bins, the cumulative histogram has a steep slope and where
the histogram has low bins, the cumulative histogram has a small slope. The idea is
now to use the cumulative histogram as a gray-level mapping. So the pixel values
located in areas of the histogram where the bins are high and dense will be mapping
to a wider interval in the output since the slope is above 1. On the other hand, the
regions in the histogram where the bins are small and far apart will be mapped to a
smaller interval since the slope of the gray-level mapping is below 1.

For this to work in practice we need to ensure that the y-axis of the cumulative
histogram is in the range [0,255]. This is simply done by first dividing each value on
the y-axis with count, i.e., the total number of pixels in the image, and then multiply
with 255. In Fig. 4.15 the effect of histogram equalization is illustrated.
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Fig. 4.15 The effect of histogram stretching and histogram equalization on an input image with
both very high and very low pixel values

Fig. 4.16 An example of thresholding. Notice that it is impossible to define a perfect silhouette
with the thresholding algorithm. This is in general the case

4.4 Thresholding

One of the most fundamental point processing operations is thresholding. Thresh-
olding is the special case when f1 = f2 in Eq. 4.11. Mathematically this is unde-
fined, but in practice it simply means that all input values below f1 are mapped to
zero in the output and all input values above f1 are mapped to 255 in the output.
This means that we will only have completely black and completely white pixel
values in the output image. Such an image is denoted a binary image, see Fig. 4.16,
and this representation of an object is denoted the silhouette of the object.
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Fig. 4.17 Ideal histogram: a clear definition of object and background. Problematic histogram:
the distinction between the object and the background is harder, if not impossible

One might argue that we loose information when doing this operation. However,
imagine you are designing a system where the goal is to find the position of a person
in a sequence of images and use that to control some parameter in a game. In such a
situation all you are interested in is the position of the person and nothing more. In
this case, thresholding in such a manner that the person is white and the rest is black,
would be exactly what we are interested in. In fact, we can say we have removed the
redundant information or eliminated noise in the image.

Thresholding is normally not described in terms of gray-level mapping, but rather
as the following segmentation algorithm:

if f (x, y) ≤ T then g(x, y) = 0

if f (x, y) > T then g(x, y) = 255
(4.13)

where T is the threshold value. We might of course also reverse the equalities so
that every pixel below the threshold value is mapped to white and every pixel above
the threshold value is mapped to black.

In many image processing systems, thresholding is a key step to segmenting the
foreground (information) from the background (noise). To obtain a good threshold-
ing the image is preferred to have a histogram which is bi-modal. This means that
the histogram should consist of two “mountains” where one mountain corresponds
to the background pixels and the other mountain to the foreground pixels. Such a
histogram is illustrated to the left in Fig. 4.17. In an ideal situation like the one
shown to the right, deciding the threshold value is not critical, but in real life the
two mountains are not always separated so nicely and care must therefore be taken
when defining the correct threshold value.

In situations where you have influence on the image acquisition process, keep this
histogram in mind. In fact, one of the sole purposes of image acquisition is often to
achieve such a histogram. So it is often beneficial to develop your image processing
algorithms and your setup (camera, optics, lighting, environment) in parallel.
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Fig. 4.18 The box is defined
by the threshold values. The
box indicates the region
within the RGB color cube
where object pixels lie

4.4.1 Color Thresholding

Color thresholding can be a powerful approach to segmenting objects in a scene.
Imagine you want to detect the hands of a human for controlling some interface.
This can be done in a number of ways, where the easiest might be to ask the user to
wear colored gloves. If this is combined with the restriction that the particular color
of the gloves is neither present in the background nor on the rest of the user, then by
finding all pixels with the color of the gloves we have found the hands. This operates
similarly to the thresholding operation described in Eq. 4.13. The difference is that
each of the color values of a pixel is compared to two threshold values, i.e., in total
six threshold values. If each color value for a pixel is within the threshold values,
then the pixel is set to white (foreground pixel) otherwise black (background pixel).
The algorithm looks as follows for each pixel:

If

R > Rmin and R < Rmax and

G > Gmin and G < Gmax and

B > Bmin and B < Bmax

Then g(x, y) = 255

Else g(x, y) = 0

(4.14)

where (R,G,B) are the RGB values of the pixel being processed and Rmin and
Rmax define the range of acceptable values of red in order to accept the current pixel
as belonging to an object of interest (similarly for green and blue).

The algorithm actually corresponds to defining a box in the RGB color space and
classifying a pixel as belonging to an object if it is within the box and otherwise
classifying it as background. This is illustrated in Fig. 4.18.

One problem with color thresholding is its sensitivity to changes in the illumina-
tion. Say you have defined your threshold values so that the system can detect the
two gloved hands. If someone increases the amount of light in the room, the color
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Fig. 4.19 The two gray shapes in figure (a) and (b) are defined by threshold values and indicate
the regions within the two color spaces where object pixels lie. (a) The rg-color space. (b) The
hs-color space. (c) An example of a shape that is not well defined by threshold values. Instead a
LUT should be applied

will stay the same, but the intensity will change. To handle such a situation, you
need to increase/decrease the threshold values accordingly. This will result in the
box in Fig. 4.18 being larger and hence the risk of including non-glove pixels will
increase. In the worst case, the box will be as large as the entire RGB color cube.

The solution is to convert the RGB color image into a representation where the
color and intensity are separated, and then do color thresholding on only the colors,
e.g., rg-values or hs-values. The thresholds can now be more tight, hence reducing
the risk of false classification. In Fig. 4.19 the equivalent of Fig. 4.18 is shown for
rg- and hs-representations, respectively. Regardless of which color representation is
applied, the problem of choosing proper threshold values is the same. Please consult
Appendix C regarding this matter.

Sometimes we can find ourselves in a situation where the colors of an object are
not easily described by a few threshold values. In Fig. 4.19(c) this is illustrated by
the banana-shaped region. If you fit a box to this shape (by using four thresholds
values) you will clearly include non-object pixels and hence have an incorrect seg-
mentation of the object. The solution is to define a look-up-table (LUT). A LUT is
a table containing the color values belonging to the object of interest (in some color
space). These values can be found in a training phase by manually inspecting the
object of interest in a number of different images. Normally the values are consid-
ered as an image and a morphologic closing operation, see Chap. 6, is performed
to obtain a smooth and coherent shape. During run-time Eq. 4.14 is replaced by a
function that takes the value of a pixel and test if this value is present in the LUT. If
not, the corresponding output pixel is set to black, otherwise it is set to white.

No matter which color space you use for thresholding it is often a good idea to
also do some thresholding on the intensity values. If you look at the color cube you
can see that all possible colors will have a vector starting in (0,0,0). This means
that the vectors will lie in the vicinity of (0,0,0) and the practical meaning of this
is that it is hard to distinguish colors when the intensity is low. Therefore it is often
a good idea not to process the colors of pixels with low intensity values. Likewise,
color pixels with a very high intensity might also be problematic to process. Say we
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have a pixel with the following RGB values (255,250,250). This will be interpreted
as very close to white and hence containing no color. But it might be that the real
values are (10000,250,250). You have no way of knowing, since the red value is
saturated in the image acquisition process. So the red pixel is incorrectly classified
as (close to) white. In general you should try to avoid saturated pixels in the image
acquisition process, but when you do encounter them, please take great care before
using the color of such a pixel. In fact, you are virtually always better off ignoring
such pixels.

4.4.2 Thresholding in Video

When you need to threshold a single image you can simply try all possible thresh-
old values and see which one provides the best result. When you built a system that
operates on live input video the situation is different. Imagine you have constructed
a setup with a camera and some lighting etc. You connect a monitor and look at the
images being captured by the camera. If nothing is happening in the images (static
scene) the images will seem to be exactly the same. But they are not. For example, if
the camera is mounted on a table which moves slightly whenever someone is walk-
ing nearby, the images will change slightly. Another typical situation is the fact that
most indoor lighting is powered by an alternating light source, for example 50 Hz,
meaning that the level of illumination changes rapidly over time. Such changes can
often not be detected by simply looking at the scene. But if you subtract two con-
secutive images2 and display the result, you can experience this phenomena. If the
images are in fact exactly the same, then the output image (after image subtraction)
should only contain zeros, hence be black. The more non-zero pixels you have in
the output image the more “noise” is present in your setup. Another way of illustrat-
ing such small changes is to calculate and visualize the histogram for each image.
No matter what, it is always a good idea to use one of these methods to judge the
uncertainties in your image acquisition/setup.

Due to these uncertainties you always need to learn the threshold values when
processing video. In this context, learning means to evaluate what the right thresh-
old value is in different situations and then select a representative value, see Ap-
pendix C. Approaching the threshold value selection like this will help in many
situation. But if you have a scenario where the lighting can change significantly,
then you need a different approach.

A significant change is especially observed when sunlight enters the scene, ei-
ther because the system operates outside or due to windows in the room where
the setup is located. When a cloud passes in front of the sun an abrupt change
can be seen in the images. Even without clouds, the changing position (and in-
tensity) of the sun during the day can also result in large changes accumulating
over time. Further abrupt changes appear due to the auto gain being enabled, see

2How to subtract images is explained in Sect. 4.6. This technique plays a major role in Chap. 8.
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Fig. 4.20 Three images of the same scene with different illuminations and hence different his-
tograms

Chap. 2. Imagine a white object is entering a scene where the background is dark.
As more and more of the object becomes visible in the scene the auto gain func-
tion will decrease the brightness accordingly in order to keep the overall brightness
constant. This means that the threshold value needs to be changed from image to
image and often rather significantly. Such significant changes can sometimes be
handled by preforming a histogram stretching/equalization. This only works when
the changes result in a shifted histogram (making the image brighter or darker) with-
out changing the structure of the histogram. An example of a changed structure is
when light from multiple windows illuminate the objects in the scene differently
over time. In Fig. 4.20 examples of different illuminations of the same scene are
shown.

Automatic Thresholding: Global Method
As mentioned above, thresholding is based on the notion that an image consists of
two groups of pixels; those from the object of interest (foreground) and those from
the background. In the histogram these two groups of pixels result in two “moun-
tains” denoted modes. We want to select a threshold value somewhere between these
two modes. Automatic methods for doing so exist and they are based on analyzing
the histogram, i.e. all pixels are involved, and hence denoted a global method. The
idea is to try all possible threshold values and for each, evaluate if we have two good
modes. The threshold value producing the best modes is selected. Different defini-
tions of “good modes” exits and here we describe the one suggested by Otsu [14].

The method evaluates Eq. 4.15 for each possible threshold value T and select the
T where C(T ) is minimum. The reasoning behind the equation is that the correct
threshold value will produce two narrow modes, whereas an incorrect threshold
value will produce (at least one) wide mode. The narrowness of a mode can be
measured by the variance σ 2, see Appendix C for a definition of σ 2. So the smaller
the variances the better. To balance the measure, each variance is weighted by the
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Fig. 4.21 Global automatic thresholding. Top left: Input image. Top right: Input image thresh-
olded by the value found by Otsu’s method. Bottom left: Histogram of input image. Bottom right:
C(T ) as a function of T . See text. The vertical dashed line illustrates the minimum value, i.e., the
selected threshold value

number of pixels used to calculate it. A very efficient implementation is described
in [14]. The method works very well in situations where two distinct modes are
present in the histogram, see Fig. 4.21, but it can also produce good results when
the two modes are not so obvious.

C(T ) = M1(T ) · σ 2
1 (T ) + M2(T ) · σ 2

2 (T ) (4.15)

where M1(T ) is the number of pixels to the left of T and M2(T ) is the rest of the
pixels in the image. σ 2

1 (T ) and σ 2
2 (T ) are the variances of the pixels to the left and

right of T , respectively.

Automatic Thresholding: Local Method
In Fig. 4.23 an image with non-even illuminating is shown. The consequence of this
type of illumination is that an object pixel in one part of the image is identical to
a background pixel in another part of the image. The image can therefore not be
thresholded using a single (global) threshold value, see Fig. 4.23. But if we crop
out a small area of the image and look at the histogram, we can see that two modes
are present and that this image can easily be thresholded, see Fig. 4.22. From this
follows that thresholding is possible locally, but not globally.

We can view thresholding as a matter of finding object pixels and these are
per definition different from background pixels. So if we had an image of the
background, we could then subtract it from the input image and the object pix-
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Fig. 4.22 Left: Cropped image. Center: Histogram of input. Right: Thresholded image

Fig. 4.23 Local automatic thresholding. Top row: Left: Input image. Center: Mean version of
input image. Right: Mean image subtracted from input. Center row: Histograms of input and mean
image subtracted from input. Bottom row: Thresholded images

els would stand out. We can estimate a background pixel by calculating the av-
erage of the neighboring pixels.3 Doing this for all pixels will result in an esti-
mate of the background image, see Fig. 4.23. We now subtract the input and the
background image and the result is an image with a more even illumination where
a global threshold value can be applied, see Fig. 4.23.4 Depending on the situa-
tion this could either be a fixed threshold value or an automatic value as describe
above.

3How to calculate the average is discussed in the next chapter.
4In the subtraction process both positive and negative values can appear. Since we are only inter-
ested in the difference we take the absolute value.



4.5 Logic Operations on Binary Images 63

The number of neighborhood pixels to include in the calculation of the average
image depends on the nature of the uneven illumination, but in general it should be a
very high number. The method assumes the foreground objects of interest are small
compared to the background. The more this assumption is violated, the worse the
method performs.

4.5 Logic Operations on Binary Images

After thresholding we have a binary image consisting of only white pixels (255)
and black pixels (0). We can combine two binary images using logic operations.
The basic logic operations are NOT, AND, OR, and XOR (exclusive OR). The NOT
operation do not combine two images but only works on one at a time. NOT simply
means to invert the binary image. That is, if a pixel has the value 0 in the input it
will have the value 255 in the output, and if the input is 255 the output will be 0.
The three other basic logic operations combine two images into one output. Their
operations are described using a so-called truth table. Below the three truth tables
are listed.

A truth table is interpreted in the following way. The left-most column contains
the possible values a pixel in image 1 can have. The topmost row contains the pos-
sible values a pixel in image 2 can have. The four remaining values are the output
values. From the truth tables we can for example see that 255 AND 0 = 0, and 0 OR
255 = 255. In Fig. 4.24 a few other examples are shown. Note that from a program-
ming point of view white can be represented by 1 and only one byte is then required
to represent each pixel. This can save memory and speed up the implementation.

4.6 Image Arithmetic

Instead of combining an image with a scalar as in Eq. 4.1, an image can also be
combined with another image. Say we have two images of equal size, f1(x, y) and
f2(x, y). These are combined pixel-wise in the following way:

g(x, y) = f1(x, y) + f2(x, y) (4.16)
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Fig. 4.24 Different logic
operations

Other arithmetic operations can also be used to combine two images, but most
often addition or subtraction are the ones applied. No matter the operation image
arithmetic works equally well for gray-scale and color images.

When adding two images some of the pixel values in the output image might
have values above 255. For example if f1(10,10) = 150 and f2(10,10) = 200, then
g(10,10) = 350. In principle this does not matter, but if an 8-bit image is used for
the output image, then we have the problem known as overflow. That is, the value
cannot be represented. A similar situation can occur for image subtraction where a
negative number can appear in the output image. This is known as underflow.

One might argue that we could simply use a 16 or 32-bit image to avoid these
problems. However, using more bit per pixel will take up more space in the computer
memory and require more processing power from the CPU. When dealing with
many images, e.g., video data, this can be a problem.

The solution is therefore to use a temporary image (16-bit or 32-bit) to store
the result and then map the temporary image to a standard 8-bit image for further
processing. This principle is illustrated in Fig. 4.25.

This algorithm is the same as used for histogram stretching except that the mini-
mum value can be negative:
1. Find the minimum number in the temporary image, f1

2. Find the maximum number in the temporary image, f2

3. Shift all pixels so that the minimum value is 0: gi(x, y) = gi(x, y) − f1

4. Scale all pixels so that the maximum value is 255: g(x, y) = gi(x, y) · 255
f2−f1

where gi(x, y) is the temporary image.
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Fig. 4.25 An example of overflow and how to handle it. The addition of the images produces
values above the range of the 8-bit image, which is handled by storing the result in a temporary
image. In this temporary image the highest value is identified, and used to scale the intensity values
down into the 8-bit range. The same approach is used for underflow. This approach also works for
images with both over- and underflow

Image arithmetic has a number of interesting usages and here two are presented.
In Chap. 8 we present another one, which is related to video processing.

The first one is simply to invert an image. That is, a black pixel in the input
becomes a white pixel in the output etc. The equation for image inversion is defined
in Eq. 4.17 and an example is illustrated in Fig. 4.26.

g(x, y) = 255 − f (x, y) (4.17)

Another use of image arithmetic is alpha blending. Alpha blending is used when
mixing two images, for example gradually changing from one image to another
image. The idea is to extend Eq. 4.16 so that the two images have different impor-
tance. For example 20% of f1(x, y) and 80% of f2(x, y). Note that the sum of the
two percentages should be 100%. Concretely, the equation is rewritten as

g(x, y) = α · f1(x, y) + (1 − α) · f2(x, y) (4.18)
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Fig. 4.26 Input image and
inverted image

Fig. 4.27 Examples of alpha blending, with different alpha values

where α ∈ [0,1] and α is the Greek letter “alpha”, hence the name alpha blending.
If α = 0.5 then the two images are mixed equally and Eq. 4.18 has the same effect
as Eq. 4.16. In Fig. 4.27, a mixing of two images is shown for different values of α.

In Eq. 4.18, α is the same for every pixel, but it can actually be different from
pixel to pixel. This means that we have an entire image (with the same size as
f1(x, y), f2(x, y) and g(x, y)) where we have α-values instead of pixels: α(x, y).
Such an “α-image” is often referred to as an alpha-channel. This can for example
be used to define the transparency of an object.

4.7 Programming Point Processing Operations

When implementing one of the point processing operations in software the follow-
ing is done.
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Fig. 4.28 The order in which
the pixels are visited.
Illustrated for a 10 × 10
image

Remember that each pixel is individually processed meaning that it does not mat-
ter in which order the pixels are processed. However, we follow the order illustrated
in Fig. 4.28. Starting in the upper-left corner we move from left to right and from
top to bottom ending in the lower-right corner.5

Note that this order corresponds to the way the coordinate system is defined, see
Fig. 2.19. The reason for this order is that it corresponds to the order in which the
pixels from the camera are sent to the memory of the computer. Also the same order
the pixels on your TV are updated. Physically the pixels are also stored in this order
meaning that your algorithm is faster when you process the pixels in this order due
to memory access time.

In terms of programming the point processing operations can be implemented as
illustrated below—here exemplified in C-code:

f o r ( y = 0 ; y < M; y = y + 1)
{

f o r ( x = 0 ; x < N; x = x + 1)
{

temp = G e t P i x e l ( i n p u t , x , y ) ;
v a l u e = O p e r a t i o n ( temp ) ;
S e t P i x e l ( o u t p u t , x , y , v a l u e ) ;

}
}

where M is the height of the image and N is the width of the image. GetPixel
is a function, which returns the value of the pixel at position (x, y) in the image
called input. The function SetPixel changes the value of the pixel at position (x, y)

in the image called output to value. Note that the two functions are not built-in C-
functions. That is, you either need to write them yourself or include a library where
they (or similar functions) are defined.

5Note that the above order of scanning through the image and the code example is general and
used for virtually all methods, operations and algorithms presented in this book.
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The programming example primarily consists of two FOR-loops which go
through the image, pixel-by-pixel, in the order illustrated in Fig. 4.28. For each
pixel, a point processing operation is applied.

Below we show what the C-code would look like if the operation in Eq. 4.3 were
implemented.

f o r ( y = 0 ; y < M; y = y + 1)
{

f o r ( x = 0 ; x < N; x = x + 1)
{

v a l u e = a ∗ G e t P i x e l ( i n p u t , x , y ) + b ;
S e t P i x e l ( o u t p u t , x , y , v a l u e ) ;

}
}

where a and b are defined beforehand.
Below we show what the C-code would look like if the operation in Eq. 4.13

were implemented.

f o r ( y = 0 ; y < M; y = y + 1)
{

f o r ( x = 0 ; x < N; x = x + 1)
{

i f ( G e t P i x e l ( i n p u t , x , y ) > T )
S e t P i x e l ( o u t p u t , x , y , 2 5 5 ) ;

e l s e
S e t P i x e l ( o u t p u t , x , y , 0 ) ;

}
}

where T is defined beforehand.

4.8 Further Information

Thresholding is a key method in many video processing systems. Please remem-
ber that there is a direct relationship between your image acquisition process, your
setup and your choice of threshold value. If the methods described in this chapter
are not sufficient, please bear in mind that other methods for especially automatic
thresholding exist.

A very popular use of color thresholding is to segment objects (especially people)
by placing them in front of a unique colored background. The object pixels are then
found as those pixels in the image which do not have this unique color. This principle
is denoted chroma-keying and used for special effects in many movie productions
as well as in TV weather-forecasts, etc. In the latter example the host appears to
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Fig. 4.29 Two gray-scale
images

Fig. 4.30 The histogram of an image

be standing in front of a weather map. In reality the host is standing in front of a
green or blue screen and the background pixels are then replaced by pixels from the
weather map. Obviously, this only works when the color of the host’s clothing is
different from the unique color used for covering the background.

When you as a designer have the freedom of defining the colors to be recognized
you can use the HSI color representation to select the most optimal colors. If you
only need one color, then you are free to choose, but when more colors are to be
thresholded, optimal basically means to pick colors most different and hence avoid
overlap. Looking at the HS circle in Fig. 3.11 you can see that the angle between
two colors should be 180° in order to minimize the risk of overlap. With three colors
you need to have 120° between the colors etc. Obviously this approach assumes you
can construct all possible color, which might not be realistic in a real-life situation.

4.9 Exercises

Exercise 1: Explain the following concepts: point processing, brightness, contrast,
gray-level mapping, image histogram, thresholding, logic operations.

Exercise 2: A linear gray-level mapping is performed on image f1(x, y) in
Fig. 4.29 where a = 1 and b = 15. What is the output value of f1(2,2)?

Exercise 3: A gamma gray-level mapping is performed on image f1(x, y) in
Fig. 4.29 where γ = 0.45. What is the output value of f1(2,2)?

Exercise 4: A logarithmic gray-level mapping is performed on image f1(x, y) in
Fig. 4.29. What is the output value of f1(2,2)?

Exercise 5: Given a histogram, how can the original gray-scale image be recreated?
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Fig. 4.31 Eight binary images

Exercise 6: Look at the histogram in Fig. 4.30. Does it come from a dark or bright
image?

Exercise 7: Look at the histogram in Fig. 4.30. Does it come from an image with
high or low contrast?

Exercise 8: Histogram stretching is performed on the histogram in Fig. 4.30. After
histogram stretching a pixel has the value 128. What value did this pixel have
before histogram stretching?

Exercise 9: Calculate the cumulative histogram of image f2(x, y) in Fig. 4.29.
Exercise 10: How will the threshold algorithm look like if two threshold values are
used instead of just one?

Exercise 11: Explain the two automatic thresholding methods and discuss their dif-
ferences.

Exercise 12: Given the two binary images A and B in Fig. 4.31. How can logic
operations be applied to generate the binary images: C, D, E, F, G, and H?

Exercise 13: The two images f1(x, y) and f2(x, y) in Fig. 4.29 are added together.
Calculate the 8-bit output image?

Exercise 14: The image f2(x, y) in Fig. 4.29 is inverted and alpha blended with
f1(x, y) where α = 0.5. Calculate the output image.

Additional exercise 1: Describe the motivation for using gamma-correction in im-
age capturing and visualization.

Additional exercise 2: Find and describe alternative automatic thresholding meth-
ods.
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In the previous chapter we saw that a pixel value in the output was set according
to a pixel value in the input at the same position and a point processing operation.
This principle has many useful applications (as we saw), but it cannot be applied to
investigate the relationship between neighboring pixels. For example, if we look at
the pixel values in the small area in Fig. 5.1, we can see that a significant change in
intensity values occurs in the lower left corner. This could indicate the boundary of
an object and by finding the boundary pixels we have found the object.

In this and the next chapter we present a number of methods where the neighbor
pixels play a role when determining the output value of a pixel. Overall these meth-
ods are denoted neighborhood processing and the principle is illustrated in Fig. 5.2.
The value of a pixel in the output is determined by the value of the pixel at the same
position in the input and the neighbors together with a neighborhood processing
operation. We use the same notation as in the previous chapter, i.e., f (x, y) is the
input image and g(x, y) is the output image.1

5.1 The Median Filter

If we look at Fig. 5.3 we can see that it has been infected with some kind of noise
(the black and white dots). Let us set out to remove this noise. First of all we zoom
in on the image and look closer at particular pixel values. What we can see is that
the noise is isolated pixels having a value of either 0 (black) or 255 (white), such
noise is denoted salt-and-pepper noise. By isolated we mean that they have a value
very different from their neighbors. We need somehow to identify such pixels and
replace them by a value which is more similar to the neighbors.

One solution is to replace the noise pixel by the mean value of the neighbors. Say
we use the eight nearest neighbors for the noise pixel at position (1,1) in the image
patch in Fig. 5.3. The mean value is then

1Readers unfamiliar with vectors and matrices are advised to consult Appendix B before reading
this chapter.

T.B. Moeslund, Introduction to Video and Image Processing,
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Fig. 5.1 A part of the giraffe-image has been enlarged to show the edge which humans easily
perceive. Using methods described in this chapter the computer will also be able to tell where the
edge is

Fig. 5.2 The principle of neighborhood processing. To calculate a pixel in the output image, a
pixel from the input image and its neighbors are processed

Mean value = 205 + 204 + 204 + 206 + 0 + 208 + 201 + 199 + 205

9
= 181.3 � 181 (5.1)

This results in the noise pixel being replaced by 181, which is more similar to
the neighbors. However, the value still stands out and therefore the median is often
used instead. The median value of a group of numbers is found by ordering the
numbers in increasing order and picking the middle value. Say we use the eight
nearest neighbors for the first pixel infested by noise in Fig. 5.3. The ordering yields

Ordering : [0,199,201,204,204,205,205,206,208]
Median = 204 (5.2)

and the middle value is 204, hence the median is 204. The noise pixel is now re-
placed by 204, which does not stand out.
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Fig. 5.3 An image infected with salt-and-pepper noise. The noise is easily recognized in both the
image- and the number representations

The next question is how to find the noise pixels in order to know where to per-
form the median operation. For the particular example we could scan the image
pixel-by-pixel and look for isolated values of 0 or 255. When encountered, the me-
dian operation could be applied. In general, however, a pixel with a value of say
234 could also be considered noise if it is isolated (stands out from its neighbors).
Therefore, the median operation is applied to every single pixel in the image and we
call this filtering the image using a median filter. Filtering the image refers to the
process of applying a filter (here the median filter) to the entire image. It is important
to note that by filtering the image we apply the filter to each and every pixel.

When filtering the image we of course need to decide which operation to apply
but we also need to specify the size of the filter. The filter used in Fig. 5.2 is a
3 × 3 filter. Since filters are centered on a particular pixel (the center of the filter)
the size of the filter is uneven, i.e., 3, 5, 7, etc. Very often filters have equal spatial
dimensions, i.e., 3×3, 5×5, 7×7, etc. Sometimes a filter is described by its radius
rather than its size. The radius of a 3 × 3 filter is 1, 2 for a 5 × 5 filter, 3 for a 7 × 7
filter etc. The radius/size of a filter controls the number of neighbors included. The
more neighbors included, the more strongly the image is filtered. Whether this is
desirable or not depends on the application. Note that the larger the size, the more
processing power is required by the computer. Applying a filter to an image is done
by scanning through the image pixel-by-pixel from the upper left corner toward the
lower right corner, as described in the previous chapter. Figure 5.4 shows how the
image in Fig. 5.3 is being filtered by a 3 × 3 (radius = 1) mean and median filter,
respectively. Note the superiority of the median filter.

In terms of programming, the Median filter can be implemented as illustrated
below—here exemplified in C-code:

f o r ( y = Rad ius ; y < (M − Radius ) ; y = y + 1)
{

f o r ( x = Rad ius ; x < (N − Radius ) ; x = x + 1)
{
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Fig. 5.4 Resulting images of two noise filters. Notice that the mean filter does not remove all the
noise and that it blurs the image. The median filter removes all the noise and only blurs the image
slightly

G e t P i x e l V a l u e s ( x , y ) ;
S o r t P i x e l V a l u e s ( ) ;
v a l u e = FindMedian ( ) ;
S e t P i x e l ( o u t p u t , x , y , v a l u e ) ;

}
}

where M is the height of the image, N is the width of the image and Radius is the
radius of the filter.

What should be noticed both in the figure and in the code is that the output image
will be smaller than the input image. The reason is that the filter is defined with a
center and a radius, but if the center is a pixel in for example the first row, then no
neighbors are defined above. This is known as the border problem, see Fig. 5.5. If it
is unacceptable that the output image is reduced in size (for example because it is to
be added to the input image) then inspiration can be found in one of the following
suggestions2:
Increase the output image After the output image has been generated, the pixel
values in the last row (if radius = 1) is duplicated and appended to the image. The
same for the first row, first column and last column.

Increase the input image Before the image is filtered the pixel values in the last
row (if radius = 1) of the input image is duplicated and appended to the input
image. The same for the first row, first column and last column.

Apply special filters at the rim of the image Special filters with special sizes are
defined and applied accordingly, see Fig. 5.5.

2Note that this issue is common for all neighborhood processing methods.
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Fig. 5.5 An illustration of the border problem, which occurs when using neighborhood processing
algorithms. If a kernel with a size of 3 × 3 is used, then the border illustrated in f (x, y) cannot be
processed. One solution to this is to apply kernels with special sizes on the borders, like the ones
showed to the right

5.1.1 Rank Filters

The Median Filter belongs to a group of filters known as Rank Filters. The only
difference between them is the value which is picked after the pixels have been
sorted:
The minimum value This filter will make the image darker.
The maximum value This filter will make the image brighter.
The difference This filter outputs the difference between the maximum and min-
imum value and the result is an image where the transitions between light and
dark (and opposite) are enhanced. Such a transition is often denoted an edge in an
image. More on this in Sect. 5.2.2.

5.2 Correlation

Correlation is an operation which also works by scanning through the image and
applying a filter to each pixel. In correlation, however, the filter is denoted a kernel
and plays a more active role. First of all the kernel is filled by numbers—denoted
kernel coefficients. These coefficients weight the pixel value they are covering and
the output of the correlation is a sum of weighted pixel values. In Fig. 5.6 some
different kernels are shown.

Similar to the median filter the kernel is centered above the pixel position whose
value we are calculating. We denote this center (0,0) in the kernel coordinate system
and the kernel as h(x, y), see Fig. 5.7. To calculate the output value we take the
value of h(−1,−1) and multiply it by the pixel value beneath. Let us say that we
are calculating the output value of the pixel at position (2,2). Then h(−1,−1) will
be above the pixel f (1,1) and the value of these two pixels are multiplied together.
The result is added to the product of the next kernel element h(0,−1) and the pixel
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Fig. 5.6 Three different kernels

value beneath f (2,1), etc. The final value which will be written into the output
image as g(2,2) is found as

g(2,2) = h(−1,−1) · f (1,1) + h(0,−1) · f (2,1) + h(1,−1) · f (3,1)

+ h(−1,0) · f (1,2) + h(0,0) · f (2,2) + h(1,0) · f (3,2)

+ h(−1,1) · f (1,3) + h(0,1) · f (2,3) + h(1,1) · f (3,3) (5.3)

The principle is illustrated in Fig. 5.7. We say that we correlate the input image
f (x, y) with the kernel h(x, y) and the result is g(x, y). Mathematically this is
expressed as g(x, y) = f (x, y) ◦ h(x, y) and written as

g(x, y) =
R∑

j=−R

R∑
i=−R

h(i, j) · f (x + i, y + j) (5.4)

where R is the radius of the kernel.3 Below, a C-code example of how to implement
correlation is shown:

f o r ( y = Rad ius ; y < (M − Radius ) ; y = y + 1)
{

f o r ( x = Rad ius ; x < (N − Radius ) ; x = x + 1)
{

temp = 0 ;
f o r ( j = −Radius ; j < ( Rad ius + 1 ) ; j = j + 1 )
{

f o r ( i = −Radius ; i < ( Rad ius + 1 ) ; i = i + 1 )
{

temp = temp + h ( i , j ) ∗ G e t P i x e l ( i n p u t , x+ i , y+ j ) ;
}

3The reader is encouraged to play around with this equation in order to fully comprehend it.
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Fig. 5.7 The principle of correlation, illustrated with a 3 × 3 kernel on a 6 × 6 image

}
S e t P i x e l ( o u t p u t , x , y , temp ) ;

}
}

When applying correlation, the values in the output can be above 255. If this is
the case, then we normalize the kernel coefficients so that the maximum output of
the correlation operation is 255. The normalization factor is found as the sum of
the kernel coefficients. That is

∑
x

∑
y h(x, y). For the left-most kernel in Fig. 5.6

the normalization factor becomes 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9, and the
resulting kernel coefficients are 1/9 as opposed to 1.



78 5 Neighborhood Processing

Fig. 5.8 An example of how a mean filter can be used to hide the identity of a person. The size of
the mean kernel decides the strength of the filter. Actual image size: 512 × 384

Looking back on the previous section we can now see that the left-most kernel in
Fig. 5.6 is exactly the mean filter. The mean filter smooths or blurs the image which
has different applications. In Fig. 5.8 one application is shown where the mean filter
is applied within the white box in order to hide the identity of a person. The bigger
the kernel, the more the smoothing. Another type of mean filter is when a kernel
like the middle one in Fig. 5.6 is applied. This provides higher weights to pixels
close to the center of the kernel. This mean filter is known as a Gaussian filter, since
the kernel coefficients are calculated from the Gaussian distribution (a bell-shaped
curve).

5.2.1 Template Matching

An important application of correlation is template matching. Template matching is
used to locate an object in an image. When applying template matching the kernel
is denoted a template. It operates by defining an image of the object we are looking
for. This object is now the template (kernel) and by correlating an image with this
template, the output image indicates where the object is. Each pixel in the output
image now holds a value, which states the similarity between the template and an
image patch (with the same size as the template) centered at this particular pixel
position. The brighter a value, the higher the similarity.

In Fig. 5.9 the correlation-based template matching is illustrated.4 We can see a
bright spot in the center of the upper part of the output corresponding to where the
template matches best. Note also that as the template is shifted left and right with
respect to this position, a number of bright spots appear. The distances between
these spots correspond to the distance between the letters in the text.

Since correlation is based on multiplying the template and the input image, bright
areas in the input image tend to produce high values in the output. This is illustrated
in Fig. 5.10 where the large white section in the clothing of the child in the middle
produces the highest values in the output. This problem in general makes it difficult,

4For binary images, template matching is normally performed using XOR.
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Fig. 5.9 Template matching
performed by correlating the
input image with a template.
The result of template
matching is seen to the right.
The gray outer region
illustrates the pixels that
cannot be processed due to
the border problem

Fig. 5.10 Template
matching using correlation
and normalized
cross-correlation. The gray
regions illustrate the pixels
that cannot be processed due
to the border problem

and in this particular case impossible, to actually find the position of the object by
looking at the values in the output image.

To avoid this problem we need to normalize the values in the output so they are
independent of the overall level of light in the image. To assist us in doing so we
use a small trick. Let us denote the template H and the image patch F . These are
both matrices, but by rearranging we can easily convert each matrix into a vector by
concatenating each row (or column) in the matrix, i.e.,

−→
H and

−→
F .

If we now look at correlation in terms of this vector representation, we can see
that Eq. 5.4 is actually the dot product between the two vectors, see Appendix B.
From geometry we know that the dot product between two vectors can be normal-
ized to the interval [−1,1] using the following equation:

cos θ =
−→
H • −→

F

|−→H | · |−→F | (5.5)
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where θ is the angle between the two vectors, and |−→H | and |−→F | are the lengths
of the two vectors. The normalization of the dot product between the vectors is a
fact because cos θ ∈ [−1,1]. The length of |−→H |, which is also the “length” of the
template, is calculated as

Length of template =
√√√√ R∑

j=−R

R∑
i=−R

h(i, j) · h(i, j) (5.6)

where R is the radius of the template and h(i, j) is the coefficient in the template at
position (i, j). The length of the image patch is calculated in the same manner.

When using this normalization the bright spots in the output no longer depend on
whether the image is bright or not but only on how similar the template and the un-
derlying image patch are. This version of template matching is denoted normalized
cross-correlation (NCC) and calculated for each pixel (x, y) using the following
equation:

NCC(x, y) = Correlation

Length of image patch · Length of template
⇒

NCC(x, y) =
∑R

j=−R

∑R
i=−R(H · F)√∑R

j=−R

∑R
i=−R(F · F) ·

√∑R
j=−R

∑R
i=−R(H · H)

(5.7)

where R is the radius of the template, H = h(i, j) is the template and F =
f (x + i, y + j) is the image patch. cos θ ∈ [−1,1] but since the image patch and
the template always contain positive numbers, cos θ ∈ [0,1], i.e., the output of nor-
malized cross-correlation is normalized to the interval [0,1], where 0 means no
similarity and 1 means a complete similarity. In Fig. 5.10 the benefit of applying
normalized cross-correlation can be seen.

An even more advanced version of template matching exist. Here the mean values
of the template and image patch are subtracted from H and F , respectively. This is
known as the zero-mean normalized cross-correlation or the correlation coefficient.
The output is in the interval [−1,1] where 1 indicates a maximum similarity (as for
NCC) and −1 indicates a maximum negative similarity, meaning the same pattern
but opposite gray-scale values: 255 instead of 0, 254 instead of 1, etc.

Independent of the type of template matching, the kernel (template) is usually
much bigger than the kernels/filters used in other neighborhood operations. Tem-
plate matching is therefore a time consuming method and can benefit from intro-
ducing a region-of-interest, see Sect. 2.4.1.

A general assumption in template matching is that the object we are looking for
has roughly the same size and rotation in both the template and the image. If this
cannot be ensured, then we need to have multiple scaled and rotated versions of
the template and perform template matching using each of these templates. This
requires significant resources and the speed of the system is likely to drop.
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Fig. 5.11 A single column of the image is enlarged and presented in a graph. This graph contains
two very significant changes in height, the position of which is marked with circles on the graph.
This is how edges are defined in an image

5.2.2 Edge Detection

Another important application of correlation is edge detection. An edge in an image
is defined as a position where a significant change in gray-level values occur. In
Fig. 5.11 an image is shown to the left. We now take an image slice defined by the
vertical line between the two arrows. This new image will have the same height as
the input image, but only be one pixel wide. In the figure this is illustrated. Note that
we have made it wider in order to be able to actually see it. Imagine now that we
interpret the intensity values as height values. This gives us a different representation
of the image, which is shown in the graph to the right.

What can be seen in the graph is that locations in the original image where we
have a significant change in gray-scale value appear as significant changes in height.
Such positions are illustrated by circles in the figure. It is these positions where we
say we have an edge in an image.

Edges are useful in many applications since they define the contour of an ob-
ject and are less sensitive to changes in the illumination compared to for example
thresholding. Moreover, in many industrial applications image processing (or rather
machine vision) is used to measure some dimensions of objects. It is therefore of
great importance to have a clear definition of where an object starts and ends. Edges
are often used for this purpose.

Gradients
To enable edge detection we utilize the concept of gradients. We first present gra-
dients for a general curve and then turn to gradients in images. In the 1D case we
can define the gradient of a point as the slope of the curve at this point. Concretely
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Fig. 5.12 A curve and the
tangent at four points

this corresponds to the slope of the tangent at this point. In Fig. 5.12 the tangents of
several different points are shown.

If we represent an image by height as opposed to intensity, see Fig. 5.13, then
edges correspond to places where we have steep hills. For each point in this image
landscape we have two gradients: one in the x-direction and one in the y-direction.
Together these two gradients span a plane, known as the tangent plane, which in-
tersects the point. The resulting gradient is defined as a vector

−→
G(gx, gy), where

gx is the gradient in the x-direction and gy is the gradient in the y-direction. This
resulting gradient lies in the tangent plane, see Fig. 5.14.

We can consider
−→
G(gx, gy) as the direction with the steepest slope (or least

steepest slope depending on how we calculate it), or in other words, if you are stand-
ing at this position in the landscape you need to follow the opposite direction of the
gradient in order to get down fastest. Or in yet another way, when water falls at this
point it will run in the opposite direction of the gradient.

Fig. 5.13 A 3D representation of the image from Fig. 5.11, where the intensity of each pixel is
interpreted as a height
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Fig. 5.14 In a 3D representation of an image, a tangent plane is present for each point. Such a
plane is defined by two gradient vectors in x- and y-direction, respectively. Here the tangent plane
is shown for one pixel

Besides a direction the gradient also has a magnitude. The magnitude expresses
how steep the landscape is in the direction of the gradient, or how fast the water will
run away (if you go skiing you will know that the magnitude of the gradient usually
defines the difficulty of the piste). The magnitude is the length of the gradient vector
and calculated as

Magnitude =
√

g2
x + g2

y (5.8)

Approximated magnitude = |gx | + |gy | (5.9)

where the approximation is introduced to achieve a faster implementation.

Image Edges
For the curves shown above, the gradients are found as the first order derivatives
denoted f ′(x). This can only be calculated for continuous curves and since an im-
age has a discrete representation (we only have pixel values at discrete positions:
0,1,2,3,4 etc.) we need an approximation. Recalling that the gradient is the slope
at a point we can define the gradient as the difference between the previous and next
value. Concretely we have the following image gradient approximations:

gx(x, y) ≈ f (x + 1, y) − f (x − 1, y) (5.10)

gy(x, y) ≈ f (x, y + 1) − f (x, y − 1) (5.11)

We have included (x, y) in the definition of the gradients to indicate that the
gradient values depend on their spatial position. This approximation will produce
positive gradient values when the pixels change from dark to bright and negative
values when a reversed edge is present. This will of course be opposite if the signs
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Fig. 5.15 Prewitt and Sobel kernels

Fig. 5.16 Sobel kernels applied to an image. Each individual kernel finds edges that the other
does not find. When they are combined a very nice resulting edge is created. Depending on the
application, the threshold value can be manipulated to include or exclude the vaguely defined
edges

are switched, i.e., gx(x, y) ≈ f (x − 1, y) − f (x + 1, y) and gy(x, y) ≈ f (x, y −
1) − f (x, y + 1). Normally the order does not matter as we will see below.

Equation 5.10 is applied to each pixel in the input image. Concretely this is done
using correlation. We correlate the image with a 1 × 3 kernel containing the fol-
lowing coefficients: −1, 0, 1. Calculating the gradient using this kernel is often too
sensitive to noise in the image and the neighbors are therefore often also included
into the kernel. The most well know kernels for edge detection are illustrated in
Fig. 5.15: the Prewitt kernels and the Sobel kernels. The difference is that the Sobel
kernels weight the row and column pixels of the center pixel more than the rest.

Correlating the two Sobel kernels with the image in Fig. 5.11 yields the edge
images in Fig. 5.16. The image to the left enhances horizontal edges, while the
image to the right enhances vertical edges. To produce the final edge image we use
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Fig. 5.17 (a) The principal behind image sharpening. (b) An example of image sharpening with
c = 0.6. The pixel values of a horizontal line (the location is indicated by the white line in the top
image) are shown to the right

Eq. 5.9. That is, we first calculate the absolute value of each pixel in the two images
and then add them together. The result is the final edge enhanced image. After this,
the final task is often to binarize the image, so that edges are white and the rest is
black. This is done by a standard thresholding algorithm. In Fig. 5.16 the final edge
enhanced image is shown together with binary edge images obtained using different
thresholds. The choice of threshold depends on the application.

5.2.3 Image Sharpening

The method presented in Sect. 4.4.2 and illustrated in Fig. 4.23 is not only applicable
to thresholding, but can also be used to increase the overall contrast of the image.
The method is expressed as follows in terms of correlation:

g(x, y) = f (x, y) − (
f (x, y) ◦ h(x, y)

)
(5.12)

where h(x, y) is a large mean filter kernel. The method belongs to the class of meth-
ods aimed at sharpening or enhancing the image. Another method for this purpose
is based on image edges and is explained in the following.

What makes it possible to see an object in a scene, is the fact that the object is
different from the background. From this follows that the transition between object
and background is of great importance and this is of course exactly why we measure
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Fig. 5.18 Left: Kernels for
approximating the second
order derivatives. Right:
Laplacian kernel

edges in an image. If we could somehow make the edges steeper the difference
between object and background would be even more profound and hence the image
sharper to look at. A way of doing this is shown in Fig. 5.17(a). The first figure shows
the pixel values of an image row. x denotes the position in the row and f (x) is the
gray-level value. The next figure shows the gradient value, or the first derivative
f ′(x), of f (x). The third figure is the second order derivative of f (x), denoted
f ′′(x). It expresses the gradient of the gradient. What we can see is that g(x) =
f (x) − c · f ′′(x) does exactly what we are interested in, namely to make the edges
steeper. The constant c can be used to weight the amount of sharpness that is desired.
For an image the second order derivatives can be approximated as

gxx(x, y) ≈ f (x − 1, y) − 2 · f (x, y) + f (x + 1, y) (5.13)

gyy(x, y) ≈ f (x, y − 1) − 2 · f (x, y) + f (x, y + 1) (5.14)

where gxx(x, y) and gyy(x, y) are the second order derivatives in the x- and y-
direction, respectively. These two expressions can easily be expressed as kernels,
see Fig. 5.18, and correlated with the image. However, instead of correlating with
both kernels and combining the results, we can combine them into the joint kernel,
h(x, y), and only do one correlation. This joint kernel is denoted the Laplacian
kernel and shown below. Mathematically this image sharpening method is expressed
as follows and illustrated in Fig. 5.17(b):

g(x, y) = f (x, y) − c
(
f (x, y) ◦ h(x, y)

)
(5.15)

where c is a constant and h(x, y) is the Laplacian kernel. Note that for both Eqs. 5.12
and 5.15 an implementation needs to make sure the output image is mapped to
[0,255]. This can be done by the method in Sect. 4.6.

5.3 Further Information

Correlation is related to the term convolution and both are used throughout the video
and image processing literature. Convolution only differs by the way the kernel is
applied to the image beneath it. Mathematically convolution is defined as:

g(x, y) =
R∑

j=−R

R∑
i=−R

h(i, j) · f (x − i, y − j) (5.16)
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Fig. 5.19 Three kernels and their rotated counterparts

Comparing this to the equation for correlation in Eq. 5.4 we can see that the
only differences are the two minus signs. The interpretation of these is that the
kernel is rotated 180° before doing a correlation. In Fig. 5.19 examples of rotated
kernels are shown. What we can see is that symmetric kernels are equal before and
after rotation, and hence convolution and correlation produce the same result. Edge
detection kernels are not symmetric. However, since we often only are interested in
the absolute value of an edge the correlation and convolution again yield the same
result.

When applying smoothing filters, finding edges etc. the process is often denoted
convolution even though it is often implemented as correlation! When doing tem-
plate matching it is virtually always denoted correlation.

One might rightfully ask why convolution is used in the first place. The answer
is that from a general signal processing5 point of view we actually do convolution,
and correlation is convolution done with a rotated kernel. However, since correlation
is easier to explain and since it is most often what is done in practice, it has been
presented as though it were the other way around in this (and many other) texts. The
technical reasons for the definition of convolution are beyond the scope of this text
and the interested reader is referred to a general signal processing textbook.

Edge detection is a key method in many image processing systems and a number
of different methods have therefore been suggested over the years. Using the Sobel
kernels works well, but results in wide edges as can bee seen in Fig. 5.17. If we
are interested in knowing the exact edge, i.e., a 1-pixel thin edge, then the same
figure suggests to use the second order derivatives and look for the places where the
values change from positive to negative or vise versa. These places are denoted zero-
crossings. As mentioned above the first order derivatives are sensitive to noise in the
images. This problem is even more profound for the second order derivatives. The

5Image processing is a subset of signal processing.
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Fig. 5.20 K1 and K2 are kernels, while T1 is a template

image is therefore smoothed using a Gaussian filter before the Laplacian is applied
to approximate the second order derivatives and looking for zero-crossings.

Another approach to finding 1-pixel thin edges is the Canny edge detector [5].
It first smooths the image using a Gaussian filter before applying the Sobel kernels.
From the Sobel kernels the direction of the gradient in each point is estimated. Next,
the principle of non-maximum suppression is applied. For each pixel the magnitude
of the gradient is compared with the magnitudes of the two nearest neighbors in the
gradient direction. The two smallest are deleted. Applying this to all pixels results
in 1-pixel thin edges. Finally a threshold is applied to prune edges with too small
magnitudes. If, however, an edge with a too small magnitude is connected6 to a
pixel with a magnitude above another threshold value, then the edge is not pruned.
This allows for an adaptive pruning and is known as the principle of hysteresis
thresholding.

Sometimes template matching is preformed on binary edge images. If the shape
of the object in the image is slightly different from the input image, the template
matching will output a very low similarity even though the two objects might look
very similar. Therefore Chamfer matching [2] can be applied instead. Here the tem-
plate image is converted into an image where each pixel contains a value indicating
the distance to the nearest edge, see Sect. 6.4. Using such a distance-image as the
template will provide a much more stable result.

5.4 Exercises

Exercise 1: Explain the following concepts: neighborhood processing, kernel, cor-
relation, border problem, image edge.

Exercise 2: What is the role of the kernel size?
Exercise 3: What is the normalization factor of the kernel K1 in Fig. 5.20?
Exercise 4: Apply a 3 × 3 median filter to the image in Fig. 5.20.

6Connectivity among pixels is discussed in Chap. 7.
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Exercise 5: Apply a 3 × 3 mean filter to the image in Fig. 5.20.
Exercise 6: Discuss the difference between the median filter and mean filter.
Exercise 7: Apply a 5 × 5 difference filter to the image in Fig. 5.20.
Exercise 8: The image in Fig. 5.20 is correlated with the kernel K2. No kernel

normalization is performed. At the position (1,1) the output value is 911. What is
the value of x?

Exercise 9: Template matching is performed on the image in Fig. 5.20 with the
template T1. Normalized cross-correlation is used. What is the output value at
position (1,3)?

Exercise 10: Why are the Sobel kernels 3 × 3 and not 1 × 3 and 3 × 1?
Exercise 11: The Prewitt kernels are applied to the image in Fig. 5.20. What is the

approximated magnitude at position (1,3)?
Additional exercise: Describe the principle behind the Canny edge detector.





6Morphology

One important branch of neighborhood processing is mathematical morphology—
or simply morphology. It is applicable to both gray-scale images as well as binary
images, but in this text only operations related to binary images are covered. Mor-
phology on binary images has a number of applications and in Fig. 6.1 three typical
ones are illustrated. The first two illustrate how to remove the noise that very of-
ten is a side effect of thresholding. It is next to impossible to achieve a perfect
binary image using thresholding. We are very likely to under-segmentation in some
regions and over-segmentation in other regions. The leftmost figure illustrates over-
segmentation in the form of the small objects in the image. Under-segmentation is
illustrated in the middle figure as holes inside the object. The problems associated
with thresholding were also mentioned in Chap. 4 where it could be seen as the
problematic histogram in Fig. 4.17.

The rightmost example in Fig. 6.1 illustrates a problem which is related to the
next chapter, where we will start to analyze individual objects. To this end we need
to ensure that the objects are separated from each other.

Morphology operates like the other neighborhood processing methods by ap-
plying a kernel to each pixel in the input. In morphology, the kernel is denoted a
structuring element and contains ‘0’s and ‘1’s. You can design the structuring ele-
ment as you please, but normally the pattern of ‘1’s form a box or a disk. In Fig. 6.2
different sized structuring elements are visualized. Which type and size to use is up
to the designer, but in general a box-shaped structuring element tends to preserve
sharp object corners, whereas a disk-shaped structuring element tends to round the
corners of the objects.

A structuring element is not applied in the same way as we saw in the previous
chapter for the kernels. Instead of using multiplications and additions in the calcula-
tions, a structuring element is applied using either a Hit or a Fit operation. Applying
one of these operations to each pixel in an image is denoted Dilation and Erosion,
respectively. Combining these two methods can result in powerful image processing
tools known as Compound Operations. We can say that there exist three levels of
operation, see Fig. 6.3, and in the following, these three levels will be described one
at a time. Note that for simplicity, we will in this chapter represent white as 1 instead
of 255.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_6, © Springer-Verlag London Limited 2012
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Fig. 6.1 Three examples of
the uses of morphology.
(a) Removing small objects.
(b) Filling holes. (c) Isolating
objects

Fig. 6.2 Two types of structuring elements at different sizes

6.1 Level 1: Hit and Fit

The structuring element is placed on top of the image as was the case for the kernels
in the previous chapter. The center of the structuring element is placed at the position
of the pixel in focus and it is the value of this pixel that will be calculated by applying
the structuring element. After having placed the structuring element we can apply
one of two methods: Hit or Fit.
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Fig. 6.3 The three levels of
operation involved in
Morphology

6.1.1 Hit

For each ‘1’ in the structuring element we investigate whether the pixel at the same
position in the image is also a ‘1’. If this is the case for just one of the ‘1’s in the
structuring element we say that the structuring element hits the image at the pixel
position in question (the one on which the structuring element is centered). This
pixel is therefore set to ‘1’ in the output image. Otherwise it is set to ‘0’. In Fig. 6.4
and Table 6.1 the hit operation is illustrated with two different structuring elements.

6.1.2 Fit

For each ‘1’ in the structuring element we investigate whether the pixel at the same
position in the image is also a ‘1’. If this is the case for all the ‘1’s in the structuring
element we say that the structuring element fits the image at the pixel position in
question (the one on which the structuring element is centered). This pixel is there-
fore set to ‘1’ in the output image. Otherwise it is set to ‘0’. In Fig. 6.4 and Table 6.1
the fit operation is illustrated with two different structuring elements. Below we
show C-code for the fit operation using a 3 × 3 box-shaped structuring element:

Temp = 0 ;
f o r ( j = y−1; j < ( y + 2 ) ; j = j +1)
{

f o r ( i = x−1; i < ( x + 2 ) ; i = i +1)
{

i f ( G e t P i x e l ( i n p u t , i , j ) == 1)
Temp = Temp + 1 ;

}
}
i f ( Temp == 9)

S e t P i x e l ( o u t p u t , x , y , 1 ) ;
e l s e

S e t P i x e l ( o u t p u t , x , y , 0 ) ;

where (x, y) is the position of the pixel being processed.
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Fig. 6.4 A binary image illustrated both by colors (black and white) and numbers (0 and 1). A, B,
C and D illustrate four 3 × 3 image regions centered at: A: f (3,3), B: f (7,3), C: f (3,7) and D:
f (8,8). Lastly two different 3 × 3 structuring elements are illustrated

Table 6.1 Results of
applying the two structuring
elements (SE) in Fig. 6.4 to
the input image in Fig. 6.4 at
four positions: A, B, C, and D

Position SE Fit Hit

A S1 No Yes

A S2 No Yes

B S1 No Yes

B S2 No No

C S1 Yes Yes

C S2 Yes Yes

D S1 No No

D S2 No No

6.2 Level 2: Dilation and Erosion

At the next level Hit or Fit is applied to every single pixel by scanning through the
image as shown in Fig. 4.28. The size of the structuring element in these operations
has the same importance as the kernel size did in the previous chapter. The bigger the
structuring element, the bigger the effect in the image. As described in the previous
chapter we also have the border problem present here and solution strategies similar
to those listed in Sect. 5.1 can be followed. For simplicity we will ignore the border
problem in this chapter.

6.2.1 Dilation

Applying Hit to an entire image is denoted Dilation and is written as

g(x, y) = f (x, y) ⊕ SE (6.1)
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Fig. 6.5 Dilation of the binary image in Fig. 6.4 using S1

The term dilation refers to the fact that the object in the binary image is increased
in size. In general, dilating an image results in objects becoming bigger, small holes
being filled, and objects being merged. How big the effect is depends on the size
of the structuring element. It should be noticed that a large structuring element can
be implemented by iteratively applying a smaller structuring element. This makes
sense since Eq. 6.2 holds. The equation states that dilating twice with SE1 is similar
to dilating one time with SE2, where SE2 is the same type but has twice the radius
of SE1. For example, if SE2 is a 5 × 5 structuring element, then SE1 is a 3 × 3, etc.

f (x, y) ⊕ SE2 ≈ (
f (x, y) ⊕ SE1

) ⊕ SE1 (6.2)

In Fig. 6.5 the binary image in Fig. 6.4 is dilated using the structuring element
S1. First of all we can see that the object gets bigger. Secondly we can observe that
the hole and the convex parts of the object are filled, which makes the object more
compact.

In Fig. 6.6 a real image is dilated with different sized box-shaped structuring
elements. Again we can see that the object is becoming bigger and that holes inside
the person are filled. What is, however, also apparent is that the noisy small objects
are also enlarged. Below we will return to this problem.

6.2.2 Erosion

Applying Fit to an entire image is denoted Erosion and is written as

g(x, y) = f (x, y) � SE (6.3)

The term erosion refers to the fact that the object in the binary image is decreased
in size. In general, erosion of an image results in objects becoming smaller, small
objects disappearing, and larger objects splitting into smaller objects. As for dila-
tion the effect depends on the size of the structuring element and large structuring
elements can be implemented using an equation similar to Eq. 6.2.
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Fig. 6.6 Dilation with different sized structuring elements

Fig. 6.7 Erosion of the binary image in Fig. 6.4 using S1

In Fig. 6.7 the binary image in Fig. 6.4 is eroded using the structuring element
S1. First of all we can see that the main object gets smaller and the small objects
disappear. Secondly we can observe that the fractured parts of the main object are
removed and only the “core” of the object remains. The size of this core obviously
depends on the size (and shape) of the structuring element.

In Fig. 6.8 a real image is eroded with different sized box-shaped structuring
elements. Again we can see that the object becomes smaller and the small (noisy)
objects disappear. So the price we pay for deleting the small noisy objects is that
the object of interest becomes smaller and fractured. Below we will return to this
problem.

6.3 Level 3: Compound Operations

Combining dilation and erosion in different ways results in a number of different
image processing tools. These are denoted compound operations. Here we present
three of the most common compound operations, namely Opening, Closing, and
Boundary Detection.
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Fig. 6.8 Erosion with different sized structuring elements

Fig. 6.9 Closing of the binary image in Fig. 6.4 using S1

6.3.1 Closing

Closing deals with the problem associated with dilation, namely that the objects
increase in size when we use dilation to fill the holes in objects. This is a problem
in situations where, for example, the size of the object (number of pixels) matters.
The solution to this problem is luckily straightforward: we simply shrink the object
by following the Dilation by an Erosion. This operation is denoted Closing and is
written as

g(x, y) = f (x, y) • SE = (
f (x, y) ⊕ SE

) � SE (6.4)

where SE is the structuring element. It is essential that the structuring elements
applied are exactly the same in terms of size and shape. The closing operation is
said to be idempotent, meaning that it can only be applied one time (with the same
structuring element). If applied again it has no effect whatsoever except for of course
a reduced size of g(x, y) due to the border problem. In Fig. 6.9, closing is illustrated
for the binary image in Fig. 6.4. Closing is done with structuring element S1. We can
see that the holes and convex structures are filled, hence the object is more compact.
Moreover, the object preserves its original size.

In Fig. 6.10 the closing operation is applied to a real image. We can see that most
internal holes are filled while the human object preserves its original size. The noisy
objects in the background have not been deleted. This can be done either by the
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Fig. 6.10 Closing performed using 7 × 7 box-shaped structuring elements

Fig. 6.11 Opening of the binary image in Fig. 6.4 using S1

operation described just below or by finding and deleting small objects, which will
be described in the next chapter.

6.3.2 Opening

Opening deals with the problem associated with erosion, namely that the objects
decrease when we use erosion to erase small noisy objects or fractured parts of big-
ger objects. The decreasing object size is a problem in situations where for example
the size of the object (number of pixels) matters. The solution to this problem is
luckily straight forward, we simply enlarge the object by following the erosion by a
dilation. This operation is denoted Opening and is written as

g(x, y) = f (x, y) ◦ SE = (
f (x, y) � SE

) ⊕ SE (6.5)

where SE is the same structuring element. This operation is also idempotent as is
the case for the closing operation. In Fig. 6.11 opening is illustrated for the binary
image in Fig. 6.4. Opening is done with structuring element S1. We can see that only
a compact version of the object remains.

In Fig. 6.12 opening is applied to a real image using a 7 × 7 box-shaped struc-
turing element. We can see that most noisy objects are removed while the object
preserves its original size.
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Fig. 6.12 Opening performed using a 7 × 7 box-shaped structuring element

Fig. 6.13 Filtering a binary image where both holes and small noisy objects are present

6.3.3 Combining Opening and Closing

In some situations we need to apply both opening and closing to an image. For
example in cases where we both have holes inside the main object and small noisy
objects. An example is provided in Fig. 6.13. Note that the structuring elements
used in the opening and the closing operations need not be the same. In Fig. 6.13
the closing was performed using a 7 × 7 box-shaped structuring element while the
opening was performed using a 15 × 15 box-shaped structuring element.

6.3.4 Boundary Detection

Doing edge detection in binary images is normally referred to as boundary detection
and can be performed as described in the previous chapter. Morphology offers an
alternative approach for binary images. The idea is to use erosion to make a smaller
version of the object. By subtracting this from the input image only the difference
stands out, namely the boundary:

g(x, y) = f (x, y) − (
f (x, y) � SE

)
(6.6)

If the task is only to locate the outer boundary, then the internal holes should first
be filled using dilation or closing. In Fig. 6.14 examples of boundary detection are
shown.
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Fig. 6.14 Boundary detection

6.4 Further Information

It has been assumed in this chapter that the center of the structuring element is
always located on top of the pixel being processed. This need not be the case and
the position of the structuring element can be off-set in any direction if need may be.
When doing so, please remember to include a procedure in you code that handles
the situation when the structuring element or parts hereof is outside the image.

There exit others and more advanced morphologic operations, including gray-
level morphology, than those presented in this chapter. For inspiration please pick up
a book focusing on these topics, e.g., [7]. In Fig. 6.15 a few examples are provided.
The first example illustrates the process of skeletonization, which is closely related
to thinning. The latter can produce 1-pixel thin edges as discussed in the previous
chapter. The other example illustrates the distance transform where the value of a
pixel is the distance to the nearest white pixel in the image.

6.5 Exercises

Exercise 1: Explain the following concepts: structuring element, hit, fit, erosion,
dilation, opening, closing.

Exercise 2: How can morphology be used to find the outline (edge) of an object?
Exercise 3: Find g(x, y) = f (x, y) ⊕ SE1. f (x, y) and SE1 are defined in
Fig. 6.16.
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Fig. 6.15 Examples of
advanced morphology. Top:
Skeletonization. Bottom:
Distance image. White means
zero and the darker the shade
the further the distance

Fig. 6.16 Left: Input image
f (x, y). Object pixels are
white (1) and background
pixels are gray (0). Right:
Structuring elements SE1 and
SE2

Exercise 4: Find g(x, y) = f (x, y) � SE1. f (x, y) and SE1 are defined in
Fig. 6.16.

Exercise 5: Find g(x, y) = f (x, y)•SE1. f (x, y) and SE1 are defined in Fig. 6.16.
Exercise 6: Find g(x, y) = f (x, y)◦SE1. f (x, y) and SE1 are defined in Fig. 6.16.
Exercise 7: Find g(x, y) = (f (x, y) � SE2) AND (NOT f (x, y) � NOT SE2).
f (x, y) and SE2 are defined in Fig. 6.16.

Additional exercise: What is skeletonization and how does it work?
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Before describing what is meant by the somewhat strange title of this chapter, let us
look at a few examples. In the first example the task is to design an algorithm which
can figure out how many circles are present in the image to the left (see Fig. 7.1).
Obviously the answer is three, but how will we make the computer figure this out?
Another example could be to find the position of the person in the image to the
right. How can we make the computer calculate this? The answer to both questions
is twofold. First we have to separate the different objects in the image and then we
have to evaluate which object is the one we are looking for, i.e., circles and humans,
respectively. The former process is known as BLOB extraction and the latter as
BLOB classification. BLOB stands for Binary Large OBject and refers to a group
of connected pixels in a binary image. The term “Large” indicates that only objects
of a certain size are of interest and that “small” binary objects are usually noise.

The title of the chapter refers to analyzing binary images by first extracting the
BLOBs, then representing them compactly, and finally classifying the type of each
BLOB. These three topics are described in more detail below.

7.1 BLOB Extraction

The purpose of BLOB extraction is to isolate the BLOBs (objects) in a binary image.
As mentioned above, a BLOB consists of a group of connected pixels. Whether or
not two pixels are connected is defined by the connectivity, that is, which pixels are
neighbors and which are not. The two most often applied types of connectivity are
illustrated in Fig. 7.2. The 8-connectivity is more accurate than the 4-connectivity,
but the 4-connectivity is often applied since it requires fewer computations, hence
it can process the image faster. The effect of the two different types of connectivity
is illustrated in Fig. 7.2 where the binary images contain either one or two BLOBs
depending on the connectivity.

A number of different algorithms exist for finding the BLOBs and such algo-
rithms are usually referred to as connected component analysis or connected com-
ponent labeling. In the following we describe one of these algorithms known as the
Grass-fire algorithm. We use 4-connectivity for simplicity.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_7, © Springer-Verlag London Limited 2012
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Fig. 7.1 (a) A binary image
containing different shapes.
(b) A binary image
containing a human and some
noise

Fig. 7.2 4- and
8-connectivity. The effect of
applying the two different
types of connectivity

7.1.1 The Recursive Grass-Fire Algorithm

The algorithm starts in the upper-left corner of the binary image. It then scans the
entire image from left to right and from top to bottom, as seen in Fig. 4.28.

At some point during the scan an object pixel (white pixel) is encountered and
the notion of grass-fire comes into play. In the binary image in Fig. 7.3 the first
object pixel is found at the coordinate (2,0). At this point you should imagine your-
self standing in a field covered with dry grass. Imagine you have four arms (!) and
are holding a burning match in each hand. You then stretch out your arms in four
different directions (corresponding to the neighbors in the 4-connectivity) and si-
multaneously drop the burning matches. When they hit the dry grass they will each
start a fire which again will spread in four new directions (up, down, left, right) etc.
The result is that every single straw which is connected to your initial position will
burn. This is the grass-fire principle. Note that if the grass field contains a river the
grass on the other side will not be burned.

Returning to our binary image, the object pixels are the “dry grass” and the non-
object pixels are water. So, the algorithm looks in four different directions and if it
finds a pixel which can be “burned”, meaning an object pixel, it does two things.
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Fig. 7.3 The grass-fire algorithm. The “big” numbers indicate the order in which the neighbors
are visited. The small numbers indicate the label of a pixel

Firstly, in the output image it gives this pixel an object label (basically a number)
and secondly it “burns” the pixel in the input image by setting it to zero (black).
Setting it to zero indicates that it has been burned and will therefore not be part
of yet another fire. In the real grass field the fire will spread simultaneously in all
directions. In the computer, however, we can only perform one action at the time
and the grass-fire is therefore performed as follows.

Let us apply the principle on Fig. 7.3. The pixel at the coordinate (2,0) is labeled
1, since it is the first BLOB and then burned (marked by a 1 in the lower right
corner). Next the algorithm tries to start a fire at the first neighbor (3,0), by checking
if it is an object pixel or not. It is indeed an object pixel and is therefore labeled 1
(same object) and “burned”. Since (3,0) is an object pixel, it now becomes the
center of attention and its first neighbor is investigated (4,0). Again, this is an object
pixel and is therefore labeled 1, “burned” and made center of attention. The first
neighbor of (4,0) is outside the image and therefore per definition not an object
pixel. The algorithm therefore investigates its second neighbor (4,1). This is not an
object pixel and the third neighbor of (4,0) is therefore investigated (3,0). This has
been burned and is therefore no longer an object pixel. Then the last neighbor of
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Fig. 7.4 Two examples of
extracted BLOBs. Each
BLOB has a unique color

(4,0) is investigated (4,−1). This is outside the image and therefore not an object
pixel. All the neighbors of (4,0) have now been investigated and the algorithm
therefore traces back and looks at the second neighbor of (3,0), namely (3,1). This
is an object pixel and is therefore labeled 1, burned and becomes the new focus of
attention. In this way the algorithm also finds (3,2) to be part of object 1 and finally
ends by investigating the fourth neighbor of (2,0).

All pixels which are part of the top object have now been labeled with the same
label 1 meaning that this BLOB has been segmented. The algorithm then moves on
following the scan path in Fig. 4.28 until it meets the next object pixel (1,3), which
is then labeled 2, and starts a new grass-fire. The result will be the image shown in
Fig. 7.2, where each BLOB has a unique label. In Fig. 7.4 the BLOBs from Fig. 7.1
have been extracted and color coded according to their BLOB label.

The algorithm can be implemented very efficiently by a function calling itself.
Such an algorithm is said to be recursive and care should be taking to ensure the
program is terminated properly as recursive algorithms have no built-in termination
strategy. Another danger is that a computer has a limited amount of memory allo-
cated to function calls. And since the grass-fire algorithm can have many thousands
function calls queued up, the computer can run out of allocated memory.

7.1.2 The Sequential Grass-Fire Algorithm

The grass-fire algorithm can also be implemented in a sequential manner. This is
less efficient from a programming point of view, but it does not suffer from the
problems mentioned above for the recursive grass-fire algorithm.

The sequential grass-fire algorithm also scans the image from top left to bottom
right. When an object pixel is found it does two things. Firstly, in the output image
it gives this pixel an object label, 1, and secondly it “burns” the pixel in the input
image by setting it to zero (black). The next step is to check the neighbors (four or
eight pixels depending on the connectivity) and see if any of them is an object pixel.
So far this is exactly the same as the recursive grass-fire algorithm, but now comes
the difference. If any of the neighbors is an object pixel they are labeled 1 in the
output image and set to zero (burned) in the input image. Also, they are placed in
a list. Next step is to take the first pixel in the list and check its neighbors. If any
are object pixels they are labeled in the output, set to zero in the input and placed
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in the list. This is continued until all pixels in the list have been investigated. The
algorithm then continues following the scan path in Fig. 4.28 until it meets the next
object pixel, which is then labeled 2, and starts a new grass-fire.

7.2 BLOB Features

Extracting the BLOBs is the first step when confronted with examples like those
presented in Fig. 7.1. The next step is now to classify the different BLOBs. For the
example with the circles, we want to classify each BLOB as either a circle or not
a circle, and, for the other example, human vs. non-human BLOBs. The classifi-
cation process consists of two steps. First, each BLOB is represented by a number
of characteristics, denoted features, and second, some matching method is applied
to compare the features of each BLOB with the features of the type of object we
are looking for. For example, to find circles we could calculate the circularity of
each BLOB and compare that to the circularity of a perfect circle. Below we will
present how we can extract different features and in the next section then show how
to compare features.

Feature extraction is a matter of converting each BLOB into a few representative
numbers. That is, keep the relevant information and ignore the rest. But before cal-
culating any features we first want to exclude every BLOB which is connected to
the border of the image. The reason is that we in general have no information about
the part of the object outside the image. For example, the semi-circle to the right of
the human in Fig. 7.1 might look like a circle, but it might as well be the top of the
head of a person lying down! Therefore, exclude all such BLOBs.

Having done so, a number of features can be calculated for each BLOB. Here
follows a description of the most common features, but many others exist and new
ones can be defined.1

Area of a BLOB is the number of pixels the BLOB consists of. This feature is often
used to remove BLOBs that are too small or too big from the image. For example,
in Fig. 7.1 (right) the human can be segmented by simply saying that all BLOBs
with an area smaller than a certain value are ignored.

Bounding box of a BLOB is the minimum rectangle which contains the BLOB,
see Fig. 7.5. It is defined by going through all pixels for a BLOB and finding the
four pixels with the minimum x-value, maximum x-value, minimum y-value and
maximum y-value, respectively. From these values the width of the bounding box
is given as xmax − xmin and the height as ymax − ymin. A bounding box can be used
as a ROI.

Bounding circle of a BLOB is the minimum circle which contains the BLOB, see
Fig. 7.5. It is found by first locating the center of the BLOB with one of the methods
describe below. Next we search from the center and outwards in one direction until
we find the point where the BLOB ends. The distance between this point and the

1In Sect. 9.3.1 features based on texture or color are described.
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Fig. 7.5 (a) Bounding box. (b) Bounding circle. (c) Convex hull

center is the radius in this direction. We do this for all possible directions (for
example with an angular resolution of 10°) and the biggest radius defines the radius
for the minimum circle.

Convex hull of a BLOB is the minimum convex polygon which contains the
BLOB, see Fig. 7.5. It corresponds to placing a rubber band around the BLOB.
It can be found in the following manner. From the topmost pixel on the BLOB
search to the right along a horizontal line. If no BLOB pixel is found increase
(clockwise) the angle of the search line and repeat the search. When a BLOB pixel
is found the first line of the polygon is defined and a new search is started based
on the angle of the previous search line. When the search reappears at the topmost
pixel, the convex hull is completed. Note that morphology also can be applied to
find the convex hull of a BLOB.

Bounding box ratio of a BLOB is defined as the height of the bounding box di-
vided by the width. This feature indicates the elongation of the BLOB, i.e., is the
BLOB long, high or neither.

Compactness of a BLOB is defined as the ratio of the BLOB’s area to the area
of the bounding box. This can be used to distinguish compact BLOBs from non-
compact ones. For example, fist vs. a hand with outstretched fingers.

Compactness = Area of BLOB

width · height
(7.1)

Center of mass (or center of gravity or centroid) of a physical object is the location
on the object where you should place your finger in order to balance the object. The
center of mass for a binary image is similar. It is the average x- and y-positions of
the binary object. It is defined as a point, whose x-value is calculated by summing
the x-coordinates of all pixels in the BLOB and then dividing by the total number of
pixels. Similarly for the y-value. In mathematical terms the center of mass, (xc, yc)

is calculated as

xc = 1

N

N∑
i=1

xi, yc = 1

N

N∑
i=1

yi (7.2)
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where N is the number of pixels in the BLOB and xi and yi are the x and y

coordinates of the N pixels, respectively. In situations where the BLOB contains
“appended parts” the median can replace Eq. 7.2. An example could be if you
want to find the center of a person’s torso. The configurations of the arms will
effect the result of Eq. 7.2, but the median is less effected. The median is more
computational demanding than the center of mass. An alternative to the median is
to erode the BLOB with a large structuring element and then calculate the center
of mass.

Center of the bounding box is a fast approximation of the center of mass. In math-
ematical terms the center of the bounding box, (xbb, ybb) is calculated as

xbb = xmin + xmax − xmin

2
= xmin + xmax

2
− xmin

2
= xmin + xmax

2
(7.3)

ybb = ymin + ymax − ymin

2
= ymin + ymax

2
− ymin

2
= ymin + ymax

2
(7.4)

Perimeter of a BLOB is the length of the contour of the BLOB. This can be found
by scanning along the rim (contour) of an object and summing the number of pixels
encountered. A simple approximation of the perimeter is to first find the outer
boundary using the method from Sect. 6.3.4 (or another edge detection algorithm).
Following this we simply count the number of white pixels in the image.

Circularity of a BLOB defines how circular a BLOB is. Different definitions exist
based on the perimeter and area of the BLOB. Heywood’s circularity factor is, for
example, defined as the ratio of the BLOB’s perimeter to the perimeter of the circle
with the same area:

Circularity = Perimeter of BLOB

2
√

π · Area of BLOB
(7.5)

A different way of calculating the circularity is to find the different radii as de-
scribed for the bounding circle. The variance (see Appendix C) of the radii gives
an estimate of the circularity. The smaller the variance the more circular the BLOB
is.

In Fig. 7.6 two of the feature values are illustrated for the BLOBs in Fig. 7.4 (left).
So after extraction of features a binary image has been converted into a number of
feature values for each BLOB. The feature values can be collected in a so-called
feature vector. For the BLOBs in Fig. 7.6, the feature vector for BLOB number one
is

−→
f1 =

[
0.31
6561

]
(7.6)

Since we have seven BLOBs, we will also have seven feature vectors:
−→
f1 , . . . ,

−→
f7 .
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Fig. 7.6 (a) The figure
illustrates two features:
Bounding Box and
Center-of-Mass. (b) The table
illustrates two other features:
Circularity and Area. Note
the order in which the BLOBs
are labeled. This is a result of
the scan-pattern in Fig. 4.28

Fig. 7.7 2D feature space
and position of the seven
BLOBs from Fig. 7.6(a). The
“x” represents the feature
values of the prototype. The
dashed rectangle: box
classifier. Red circle:
Euclidean distance classifier.
Blue ellipse: weighted
Euclidean distance classifier

7.3 BLOB Classification

Each of the objects in Fig. 7.6 has now been identified as separate BLOBs using,
for example, the Grass-Fire algorithm. The task is now to determine which BLOB
is a circle and which is not. As suggested above we can use the circularity feature
for this purpose. In Fig. 7.6 the values of the circularity of the different BLOBs are
listed. The question is now how to define which BLOBs are circles and which are
not based on their feature values. For this purpose we make a prototype model of
the object we are looking for. That is, what are the feature values of a perfect circle
and what kind of deviation will we accept? In a perfect world we will not accept any
deviations from the prototype, but in practice the object or the segmentation of the
object will not be perfect so we have to accept some deviations. For our example
with the circles, we can define the prototype to have a circularity of 1 and a deviation
of ±0.15, meaning that BLOBs with circularity values in the range [0.85,1.15] are
accepted as circles.

What if we are looking for large circles? For this task one feature is not sufficient
and we therefore use both the circularity and the area, see Fig. 7.6. These two fea-
tures span a 2-dimensional feature space as seen in Fig. 7.7. The prototype model
will now be two dimensional with each feature having an allowed range. Together
these two ranges will form a rectangle and if a BLOB in an image has feature values
inside the dashed rectangle, then it is a large circle otherwise it is not, see Fig. 7.7.
This approach is known as a box classifier and the area of the rectangle is known as
the decision region.
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Fig. 7.8 A 2D feature space where each point is a feature vector, i.e., a BLOB. The red points are
from the object we are trying to recognize while the blue are from non-object BLOBs. (a) Input.
(b) The decision region in a box classifier where the maximum and minimum values are used to
defined the decision region

Often it is not possible to define the prototype model beforehand and we therefore
need to learn it, see Appendix C. The procedure is to run the developed system on
typical input images (the more the better) and calculate the feature values for each
BLOB (both large circles and any other BLOBs that might appear in the system).
Each BLOB will result in a point in the feature space. In Fig. 7.8(a) an example is
illustrated where the red points are from large circles and the blue points are from
other BLOBs. The task we are faced with is to figure out the decision region of
the prototype model so that as many correct BLOBs as possible are included in the
decision region and at the same time exclude as many of the incorrect BLOBs as
possible. We can see that the density of the red points is not uniform, but tends to
be higher at the center of the “point cloud” of red points, indicated by a cross in the
figure. This is a typical phenomenon independent of which features we are working
with and the center is therefore a good representation of where the prototype is
located in the feature space. The center can be calculated as the mean of all the red
points, see Eqs. 7.2.

We can see in the figure that the red points are spread out differently in the x-
and y-direction. This is also a typical phenomenon and by analyzing how the points
are spread out we can learn the size of the decision region in Fig. 7.7. The simplest
way is to find the minimum and maximum values of the features and let these values
define the decision region. This can, however, lead to an incorrect classification if we
have outliers. An outlier is a point that is far away from the other points in the feature
space, see Fig. 7.8(b). A better approach is therefore is express the spreading of the
points using the variance. Like the mean, the variance is a statistical measure that
expresses something about the data. Concretely, the variance measures the average
distance the points are from the mean. So a big variance means the points are spread
out and a small variance means the points are gathered closely around the mean, see
Appendix C.
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When we have the means and variances of the different features the box classifier
should be replaced by a statistical classifier since this is a more accurate approach.
In the box classifier we have a binary decision; is a new feature vector (BLOB) in-
side or outside the rectangle? In a statistical classifier we instead measure a distance
between a new feature vector (BLOB) and the prototype. The smaller the distance
the more likely it is that the BLOB is the same type (here a large circle) as the proto-
type. To make this approach operational we need to threshold the distance and hence
end up with a binary decision region like the dashed box in Fig. 7.7. The difference
is that the region is now a more precise ellipse and not a rectangle, see Fig. 7.7. One
statistical classifier is the weighted Euclidean distance in our case defined as

WED(
−→
fi ,prototype) =

√
(fi(cir) − mean(cir))2

variance(cir)
+ (fi(area) − mean(area))2

variance(area)
(7.7)

where WED(
−→
f1 ,prototype) is the weighted Euclidean distance between feature vec-

tor
−→
fi , i.e., the ith BLOB, and the prototype. fi(cir) and fi(area) are the circularity

and area of the ith BLOB, respectively. The rest of the parameters in the equation
are the means and variances of the two features of the prototype. In the general case
with p different features the weighted Euclidean distance measure is defined as

WED(
−→
fi ,prototype) =

p∑
j=1

√
(fi(mj ) − mean(mj ))2

variance(mj )
(7.8)

where mj is the j th feature. If the variances of all features are the same, then we
can ignore them and end up with the Euclidean distance measure (ED), where the
decision region is a circle in 2D (see Fig. 7.7):

ED(
−→
fi ,prototype) =

p∑
j=1

√(
fi(mj ) − mean(mj )

)2
(7.9)

It should be noticed that the three equations above assume that the scale of the
features are the same. In our example the problem is that the area is measured in
1000 s and circularity is a value close to 1. This means that the area will dominate
the distance measure completely. The solution is to normalize the features so they
are scaled similarly and are in the same interval, e.g. [0,1]. This can be obtained,
for example, as

Area feature = min

{
Area of BLOB

Area of Model
,

Area of Model

Area of BLOB

}
(7.10)

Circularity feature = min

{
Circularity,

1

Circularity

}
(7.11)
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7.4 Further Information

The grass-fire algorithm can be modified to also operate on gray-scale and color
images. The first modification is that the algorithm does not scan the entire image,
but instead starts at a so-called seed point often defined interactively by a user. The
second modification is that an object pixel is a pixel within a certain gray-scale or
color range. The range can for example be defined as the value of the seed point ± a
small value. A more robust approach is to define the range based on the statistics of
the pixels located in the vicinity of the seed point, see Appendix C. The effect this
algorithm will have is that a region centered around the seed point will be selected.
One might think of the algorithm as a combination of thresholding and connected
component analysis. The algorithm is known as region growing and can for example
be applied to remove the red-eye effect in pictures.

The grass-fire algorithm is not the only connected component analysis algorithm
that exits. But no matter which algorithm is used it is very often combined with
the feature extraction process since both need to process each pixel in a BLOB.
Combining them will speed up the system. Many other features than those described
in this chapter exist, especially more advanced shape features such as Hu moments.
Furthermore, many new features can be defined/optimized with respect to a concrete
application.

A common question when doing BLOB classification is whether a simple box
classifier is sufficient. The answer depends on the application. If the feature vectors
of the non-object BLOBs and the object BLOBs are far apart in the feature space,
then the exact position and shape of the decision region is not critical and hence a
box classifier will suffice. This is the situation in Fig. 7.7. The accuracy of the box
classifier goes down as the feature vectors becomes similar. This is illustrated in
Fig. 7.9 where it can be seen that the weighted Euclidean distance classifier outper-
forms the box classifier.

Another line of argumentation is that the number of parameters needed to be
defined in the box classifier (the shape of the rectangle) increases as the number of
feature increase. In the weighted Euclidean distance classifier only one parameter
(a threshold on the distance) has to be decided independent on how many features
are used.

Sometimes we will have features that are dependent. Dependency means that if
we know something about one feature we can say something about another feature.
If for example we as features have area and perimeter, then it is very likely that
the value of the perimeter increases as the area increases. Dependency in data can
result in the point cloud having an orientation that is neither vertical nor horizontal,
see Fig. 7.9(c). In these cases both the box classifier and the weighted Euclidean
distance classifier will fail. Instead we must use the Mahalanobis distance classifier.
It is a statistical classifier measuring the distance between an unknown feature vector
and the prototype. So like the two other statistical classifiers presented above it only
requires one parameter to be defined no matter how many features are used. In fact,
the Euclidean distance classifier and the weighted Euclidean distance classifier are
both special cases on the Mahalanobis distance classifier. In Fig. 7.9(c) the decision
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Fig. 7.9 A 2D feature space where each point is a feature vector, i.e., a BLOB. The red points
are from the object we are trying to recognize while the blue are from non-object BLOBs. (a) Box
classifier. (b) Weighted Euclidean distance classifier. (c) Mahalanobis distance classifier (rotated
ellipse). Box classifier (green rectangle). Weighted Euclidean distance classifier (yellow ellipse)

regions for all three classifiers can be seen. Many other classifiers exist and are used
in fields such as computer vision, machine learning and artificial intelligence. Many
books can therefore be found on this matter, see for example [8].

No matter what, before choosing a particular classifier always capture a lot of
training data and see how they spread out in the feature space. Just by looking at a
figure like Fig. 7.9 you can often get a very good impression of how to proceed with
the classification, but also, and equally important, an understanding of the quality of
the chosen features.

7.5 Exercises

Exercise 1: Explain the following concepts: BLOB, connectivity, recursive grass-
fire algorithm, sequential grass-fire algorithm, feature space, classification.

Exercise 2: How many BLOBs are present in Fig. 7.10 when 4-connectivity is ap-
plied?

Exercise 3: How many BLOBs are present in Fig. 7.10 when 8-connectivity is ap-
plied?

Exercise 4: In which order are the different pixels in Fig. 7.10 labeled when a re-
cursive grass-fire algorithm with 4-connectivity is applied?

Exercise 5: Find the following features for each BLOB in Fig. 7.10: area, bounding
box ration, compactness.

Exercise 6: Find the center of mass and center of the bounding box for each BLOB
in Fig. 7.10 and discuss the differences.
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Fig. 7.10 Object pixels are
white (1). Background pixels
are gray (0)

Additional exercise 1: What is region growing and how is it different from the
recursive grass-fire algorithm?

Additional exercise 2: Suggest three features not defined in the chapter.
Additional exercise 3: Design an algorithm to calculate the convex hull of a
BLOB.

Additional exercise 4: Design an algorithm to calculate the perimeter of a BLOB.





8Segmentation in Video Data

A video sequence is in principle a sequence of images. The methods presented in
the previous chapters therefore apply equally well to a video sequence as an im-
age. We simply process one image at a time. There are, however, two differences
between a video sequence and an image. First, working with video allows us to con-
sider temporal information and hence segment objects based on their motion. This is
discussed below in Sect. 8.2. Moreover, temporal information is the cornerstone of
tracking, which is described in the next chapter. Second, video acquisition and im-
age acquisition may not be the same, and that can have some consequences. Below,
this is discussed.

8.1 Video Acquisition

A video camera is said to have a certain framerate. The framerate is a measure for
how many images the camera can capture per second and is measured in Hertz (Hz).
The framerate depends on the number of pixels (and the number of bits per pixel)
and the electronics of the camera. Usually the framerate is geared toward a certain
transmission standard like USB, Firewire, Camera Link, etc. Each of these standards
has a certain bandwidth, which is the amount of data that can be transmitted per
second. With a fixed bandwidth we are left with a choice between high resolution
of the image and a high framerate. When one goes up the other one goes down.
In the end the desired framerate and resolution will always depend on the concrete
application.

Say we have a system including a camera with a framerate of 20 Hz. This means
that a new image is captured every 50 ms. But it also means that the image pro-
cessing algorithms can spend a maximum of 50 ms per image. To underline this we
often talk about two framerates; one for the camera and one for the image processing
algorithms. The overall framerate of a system is the smallest of the two framerates.

Another important factor in video acquisition is compression. Very often the
captured video sequence needs to be compressed in order to insure a reasonable
framerate/resolution. The more the video is compressed, the higher the framer-
ate/resolution, but the worse the quality of the decompressed video. The question
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Fig. 8.1 Compression and decompression of video

is of course if the quality lose associated with video compression is a problem in a
particular application or not? To be able to answer this we first need to understand
what compression is, see Fig. 8.1.

Overall there exist two different types of compression; lossy and lossless. In the
latter type the captured video in the camera and the decompressed video on the
computer is exactly the same. This is virtually never used and hence not described
further. In the former type of compression some information will be lost. Many
different lossy video compression algorithms exist, but they all have a similar core.
First of all they are developed with focus on the human mind in the sense that if
a human looks at the captured video and the decompressed video, the difference
should be as small as possible. That is, the information lost in video compression
is optimized with respect to the human visual perception capabilities, i.e., a human
will not notice the missing information. This may not be optimal from a computer’s
point of view, in the sense that the information lost in the compression can affect the
image processing algorithms, but this is just how it is.

Humans are more sensitive to changes in the lighting than changes in the colors.
The YCbCr color representation is therefore used, see Sect. 3.3.3, and the Cb and Cr

components are compressed harder than the Y component. Another aspect of human
perception involved in compression of video is the fact that humans are better at
seeing gradual changes in an image as opposed to rapid changes. This fact is utilized
by transforming the image into a new representation where the level of change is
apparent. Rapid changes are then compressed harder than gradual changes.

Another main ingredient in video compression is to exploit that consecutive im-
ages usually do not change very much. To exploit this the image is first divided
into a number of blocks. Each block is then used as a template to search for a
matching block in the previous image. Template matching is used for this pur-
pose, see Sect. 5.2.1. The two blocks are now subtracted and their difference is
usually small and hence can be represented by fewer bits than the original block.
This is done for all blocks in the input. The last component in video compres-
sion is similar to what is used for image, sound and text compression, namely
entropy coding. This covers lossless methods that can compress based on the sta-
tistical nature of the data. For example, say we have the following pixel values:
2,3,3,3,3,3,3,3,67,12,12,12,12,10. Using entropy coding this can be written
as 2,3,255,6,67,12,255,3,10, where 255 indicates that the next value states the
number of repetitions, that is: 3,255,6 = 3,3,3,3,3,3,3. Originally we had 14
values and now we only have nine values, i.e., a compression factor of 14/9 = 1.56.
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Fig. 8.2 Different blocking effects illustrated in a zoomed picture in order to increase visibility

How many bits needed to represent a compressed image in the video sequence
depends on the content of the video. Sometimes we require more bits than are avail-
able in the bandwidth. This means that the compression method will have to delete
some additional information, for example by a harder compression of the colors or
by simply ignoring details of one or more blocks. The consequence of the latter can
be that one or more blocks in the decompressed image contain less detail and hence
appear blurry or do not contain any detail at all, i.e., will be black. Such phenomena
are known as blocking artifacts and a few are illustrated in Fig. 8.2.

The point of all the above is that you as a designer need to look into these issues
before doing video processing. It might be better to spend some extra money on a
good camera (and transmission) producing good data compared to spending lots of
time (in vain?) trying to compensate for poor data with clever algorithms. This is
especially true if developing a system based on color processing. A compromise can
be to use a cheap camera with poor quality video and then try to detect if blocking
has occurred and if so delete such images from the video sequence.

No matter the type of camera and compression algorithm, the captured video se-
quence may contain motion blur due to motion in the scene, see Sect. 2.2. A similar
problem is that the depth-of-field may not cover the entire FOV and hence moving
objects may be blurred due to an incorrect focus. Processing video containing blur
will possibly affect the results and should therefore be avoided is possible. One ap-
proach for doing so is to analyze each image and try to measure the level of blur.
If too blurry the image should be deleted. The consequence of a blurred image is
that the magnitudes of the edges in the image are small. So the blurriness can be
measured by analyzing the edges in the image, see Sect. 9.3.1. Another approach is
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to compare the input image with a blurred version of the input image. If the input
image contains a lot of edges, i.e., is sharp, then the two images will be significantly
different. If they are similar it is likely that the input image was blurred in the first
place.

8.2 Detecting Changes in the Video

In many systems we are interested in detecting what has changed in the scene, i.e.,
a new object enters the scene or an object is moving in the scene. For such purposes
we can use image subtraction, see Chap. 4, to compare the current image with a
previous image. If they differ, the difference defines the object or movement we are
looking for. In the rest of this chapter we will elaborate on this idea and present an
approach for detecting changes in video data.

8.2.1 The Algorithm

The algorithm for detecting changes in a video sequence consists of five steps:
1. Save reference image
2. Capture current image
3. Perform image subtraction
4. Thresholding
5. Filter noise

The algorithm can be performed in two different ways depending on the goal and
assumptions. If the background in the scene can be assumed to be static then every
new object entering the scene can in theory be segmented by subtracting an im-
age of the background from the current image. This process is denoted background
subtraction and illustrated in Fig. 8.3. The reference image of the background is
captured as the first image when the system commences.

The other way the algorithm can be performed is when the assumption of a static
background breaks down. For example if the light in the scene changes significantly,
then an incoming image will be very different from the background even though no
changes occurred in the scene. In such situations the reference image should be the
previous image. The rationale is that the background in two consecutive images from
a video sequence is probably very similar and the only difference is the new/moving
object, see Fig. 8.4. Such methods are denoted image differencing.

The difference between the two ways the algorithm can be performed results in
two different types of reference image: either the first in a sequence or the previous
image. The remaining four steps in the algorithm are the same for the two algorithms
and performed for each new image in the video.

Step Three
In Step three of the algorithm the reference image and current image are subtracted.
Let us denote the reference image r(x, y) and the current image f (x, y). The re-
sulting image, g(x, y), is then given as
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Fig. 8.3 The five steps of segmenting video data through background subtraction

g(x, y) = f (x, y) − r(x, y) (8.1)

In Fig. 8.3 step three is shown. The car stands out in the resulting image since the
pixel values of the car are different from the pixel values of the reference image.
However, at some locations where a pixel in the reference image has a similar value
to the pixel at the current image the resulting pixel value will be close to zero and
hence will not stand out. This can for example be seen around the wheels of the
car. As a designer you therefore need to introduce a background which is as dif-
ferent as possible from the object you intend to segment. For example, choosing a
black background when segmenting white balls is a very good idea, whereas a white
background is obviously not.

Another issue regarding image subtraction, is that negative values are very likely
to appear in the resulting image g(x, y). Say that your task is to segment objects
when they pass by your camera. The objects are black and white, meaning that
they have pixel values which are either black, f (x, y) ∼= 0, or white f (x, y) ∼= 255.
You then design a gray background which has intensity values around 100, i.e.,
r(x, y) ∼= 100, and perform image subtraction:

g(x, y) ∼=
⎧⎨
⎩

0, where the object is not present;

155, where the object is white;

−155, where the object is black
(8.2)

A common error is to set a negative pixel to zero. If this is done then only the white
parts of the object is detected. Note that whether g(x, y) = 155 or g(x, y) = −155
is equally important. The correct solution is to apply the absolute value of g(x, y),
Abs(g(x, y)), see Appendix B.
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Fig. 8.4 The five steps of segmenting video data through image differencing

Step Four
Step four of the algorithm is simply a matter of binarizing the difference image
Abs(g(x, y)) by comparing each pixel with a threshold value, T :

Binary image =
{

0, if Abs(g(x, y)) < T ;

255, otherwise
(8.3)

Step Five
The threshold in step four will, like any other threshold operation, produce noise due
to an imperfect camera sensor, small fluctuations in the lighting, the object being
similar to the background, etc. The noise will be in the form of missing pixels inside
the silhouette of the object (false negatives, see Appendix C) and silhouette-pixels
outside the actual silhouette (false positives). See Figs. 8.3 or 8.4 for examples.

The noise will in general have a negative influence on the quality of the results
and step five therefore removes the noise (if possible) using some kind of filtering.
Small isolated silhouette-pixels outside the actual silhouette can often be removed
using either a median filter or a morphologic opening operation. The holes inside
the silhouette can often be removed using a morphologic closing operation. Which
method to apply obviously depends on the concrete application.

In the following, image differencing and background subtraction are explained
in more detail.
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Fig. 8.5 (a) A static background image. The two arrows indicate the position of two pixels.
(b) Histograms of the pixel values at the two positions. The data come from a sequence of im-
ages

8.3 Background Subtraction

Background subtraction is a simple and yet efficient method of extracting an object
in a scene. This is especially true if the background can be designed to be uniform.
In indoor and controlled setups this is indeed realistic, but for more complicated
scenarios, other methods might be necessary. Even in the case of a controlled setup
two issues must be considered:
1. Is the background really constant?
2. How to define the threshold value, which is used to binarize the difference image?

When you point a video camera at a static scene, for example a wall, the images
seem the same. Very often, however, they are not. The primary reason being that
artificial lighting seldom produces a constant illumination. Furthermore, if sunlight
enters the scene, then this will also contribute to the non-constant illumination due
to the randomness associated with the incoming light rays. The effect of this is
illustrated in Fig. 8.5. To the left an image from a static scene is shown. To the
right two histograms are shown. The first histogram is based on the pixel values at
position #1 for a few seconds and similar for the second histogram. If the images are
actually the same, the histograms would contain only one non-zero bin. As can be
seen this is not the case and in general no such thing as a static background exists.

Say that the pixel at position #2 in the first image of the video sequence has a
value of 80 (not very likely according to the histogram, but nevertheless possible).
If the first image is used as the reference image, then typical background images
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(around 100 according to the histogram) will result in a difference around 20. De-
pending on the threshold value, this could actually be interpreted as an object in
the scene, since it seems different from the reference image. This is obviously not
desirable and each pixel in the reference image should therefore be calculated as the
mean of the first N images, see Appendix C. The reference image at this particular
position will then be around 100, which is much more appropriate according to the
histogram. So to make the background subtraction more robust the first few seconds
of processing should therefore be spent on calculating a good reference image.

Sometimes the background changes during processing. For example due to the
changing position of the sun during the day or due to changes in the illumination
sources, e.g., they are accidentally moved. In such situations a new reference image
should be calculated. But how do we detect that this has happened? One way is, of
course, if we can see that the performance of the system degrades. An automatic
way is to gradually change the value of each pixel in the reference image in the
following way:

rnew(x, y) = α · rold(x, y) + (1 − α) · f (x, y) (8.4)

where r(x, y) is the reference image, f (x, y) is the current image, and α is a weight-
ing factor that defines how fast the reference image is updated. The value of α de-
pends on the application, but a typical value is α = 0.95.

8.3.1 Defining the Threshold Value

As for any other threshold operation, defining the actual threshold value is a
trade-off between false positives and false negatives, see Appendix C, which is
application-dependent.

It is important to notice that Eq. 8.3 is actually based on the assumption that
the histograms for different pixel positions are similar and only differ in their mean
values. That is, it is assumed that the variation in the histograms is similar. In order
to understand the implications of this assumption let us have a closer look at the
bottom histogram in Fig. 8.5 together with Eq. 8.3. Say we define the threshold
value to 25. This means that an object in an image needs to have a value below
75 or above 125 in order to be segmented as an object pixel and not a background
pixel. This seems fine. But then have a look at the top histogram in Fig. 8.5. Clearly
this histogram has a larger variation and applying a threshold of 25 will result in
incorrect segmentation of pixel values in the intervals: [150,175] and [225,255].

In many situations different histograms will occur simply because the different
parts of the scene are exposed to different illumination conditions, which yields
histograms with different variations. For example, you could have some parts of the
background which move slightly (due to a draft for instance) and this will create a
larger variation. So to sum up the above, the problem is that each position in the
image is a associated with the same global threshold value.
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The solution to this potential problem is to have a unique threshold value for each
pixel position! Finding these manually, is not realistic simply due to the number
of pixels and the threshold values are therefore found automatically by the use of
the standard deviation for each pixel position, see Appendix C. So when the mean
of each pixel is calculated, so is the standard deviation. Equation 8.3 is therefore
reformulated as

Binary image =
{

0, if Abs(g(x, y)) < β · σ(x, y);

255, otherwise
(8.5)

where β is a scaling factor and σ(x, y) is the standard deviation at the position
(x, y). Since β is the same for every position, we have no more parameters to define
than above, but now the thresholding is done with respect to the actual data, hence
a local threshold.

8.4 Image Differencing

If the assumption of a static background is violated significantly then background
subtraction will produce incorrect results. In such situations we can apply image
differencing to detect changes in a scene. As stated above, image differencing oper-
ates as background subtraction, except for the fact that the reference image is now a
previous image.

Image differencing is simple and can efficiently measure changes in the image.
Unfortunately the method has two problems. The first is a lack of detecting new
objects which are not in motion. Say a new object enters a scene. As long as the
object moves, image differencing detects this in the image subtracting process, but
if the object stops moving, the reference image will be equal to the current image
and hence nothing is detected. This is a clear weakness compared to background
subtraction, which is indifferent to whether the new object is moving or not, as long
as the appearance of the object is different from the background.

The other problem associated with image differencing is the notion of ghost ob-
jects illustrated in Fig. 8.6. The figure contains artificial images from a sequence
where an object is moving horizontally through a scene. To make it simple, the ob-
ject is a square with uniform gray-scale value. What can be seen is that the image
differencing produces two segments (smaller objects). One originates from the cur-
rent object and the other one from the object in the reference image—where the
object was. This latter segment type is denoted a ghost object, since no object is
present. A ghost object can also be seen in Fig. 8.4.

If the goal is only to obtain the coarse motion in the image, then this does not
matter. If, however, we are only interested in the position of the object in the current
image, then we need to remove ghost objects. One approach for doing so is if we
know the moving direction of the object. We can then infer which is the object and
which is the ghost. Another approach is if we know that the object is always brighter
than the background. Then the pixels belonging to the ghost will have negative val-
ues after the image subtraction.
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Fig. 8.6 Image differencing.
The effect of changing the
reference image

It should also be noticed that when the object is overlapping in the reference and
current image, then we only detect a part of the object, as seen in Fig. 8.6. If we
know the size and speed of the object we can calculate how long time there should
be between the reference image and the current image to avoid overlap. Or in other
words, the reference image need not be the previous image T = −1, it can also be
for example T = −5, see Fig. 8.6.

8.5 Further Information

Video compression has for a long time been a cornerstone in video acquisition and
allowed for transmission and storage of video data. Video compression is a research
field in its own right and contains many more aspects than those basics presented
in this chapter. The interested reader is referred to a textbook dedicated to exactly
this field, see for example [17]. As the hardware and software has matured it has
become possible to capture, transmit and store larger and larger amounts of video
data. But even with today’s fast computers, clever transmission systems, and huge
storage facilities, the handling of video data can still be too difficult and a reduced
framerate/resolution/quality is necessary. To appreciate this fact just imagine the
amount of video data captured, transmitted and stored in a surveillance setup with
for example 100 cameras.

Background subtraction can be a powerful allied when it comes to segmenting
objects in a scene. The method, however, has some build-in limitations that are
exposed especially when processing video of outdoor scenes. First of all, the method
requires the background to be empty when learning the background model for each
pixel. This can be a challenge in a natural scene where moving objects may always
be present. One solution is to median filter all training samples for each pixel. This
will eliminated pixels where an object is moving through the scene and the resulting
model of the pixel will be a true background pixel. An extension is to first order all
training pixels (as done in the median filter) and then calculate the average of the
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pixels closest to the median. This will provide both a mean and variance per pixel.
Such approaches assume that each pixel is covered by objects less than half the time
in the training period.

Another problem that is especially apparent when processing outdoor video is the
fact that a pixel may cover more than one background. Say we have a background
pixel from a gray road. Imagine now that the wind sometime blows so a leaf covers
the same pixel. This will result in two very different backgrounds for this pixel; a
greenish color and a grayish color. If we find the mean for this pixel we will end up
with something in between green and gray with a huge variance. This will render a
poor segmentation of this pixel during background subtraction. A better approach
is therefore to define two different background models for this pixel; one for the
leaf and one for the road, see [12, 18] for specific examples and [9] for a general
discussion.

Yet another problem in outdoor video is shadows due to strong sunlight. Such
shadow pixels can easily appear different from the learnt background model and
hence be incorrectly classified as object pixels. Different approaches can be fol-
lowed in order to avoid such misclassifications. First of all, a background pixel in
shadow tends to have the same color as when not in shadow—just darker. A more
detailed version of this idea is based on the notion that when a pixel is in shadow
it often means that it is not exposed to direct sunlight, but rather illuminated by the
sky. And since the sky tends to me more bluish, the color of a background pixel in
shadow can be expected to be more blueish too. Secondly, one can group neighbor-
ing object pixels together and analyze the layout of the edges within that region. If
that layout is similar to the layout of the edges in the background model, then the
region is likely to be a shadow and not an object. For more information please refer
to [6, 15].

8.6 Exercises

Exercise 1: Explain the following concepts: framerate, compression, background
subtraction, local vs. global thresholding, image differencing, ghost object.

Exercise 2: What is the compression factor of the following sequence of pixels if
we apply entropy coding? 14,14,14,7,14,14,14,7,7,7,7,7,7,7,7,7,7,7,7,4,

4,4,4.
Exercise 3: A camera has a framerate of 125 Hz. How many images does the cam-

era capture per minute?
Exercise 4: A camera captures a new image every 125 ms. What is the framerate

of the camera?
Exercise 5: A function is defined as y = abs(x − 1). Draw this function for x ∈
[−10,10].

Exercise 6: The reference image r(x, y) in background subtraction is updated
gradually with a weight (α) of 0.9. At one point in time a pixel at position (50,50) in
the reference image has the value 100, that is, r(50,50) = 100. In the next five im-
ages we have: f (50,50) = 10, f (50,50) = 12, f (50,50) = 12, f (50,50) = 14,
f (50,50) = 15. What is r(50,50) after these five frames?
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A reference image is being learned for background subtraction. After the learning
period two pixel positions have the histograms seen in the figure below.

Exercise 7: Which histogram has the highest mean?
Exercise 8: Which histogram has the smallest standard deviation?
Exercise 9: Which pixel position comes from the most static background?
Additional exercise: What is MPEG and how does it work?



9Tracking

One of the central questions in video processing is how to follow an object over
time. Imagine you are designing a game where the position of the hand is used
as a controller. What you need from your video processing software is then the
position of the hand in each image and hence a temporal sequence of coordinates,
see Table 9.1.

We can also illustrate this as a number of points in a coordinate system. If we
connect these points we will have a curve through time, see Fig. 9.1. This curve is
denoted the trajectory of the object.

The notion of a trajectory is not limited to the position of the object. We can
generalize the concept and say that the object is represented by a so-called state
vector, where each entry in the vector contains the value of a certain parameter at a
particular time step. Besides position, such entries could be velocity, acceleration,
size, shape, color etc. Formally we define tracking to be a matter of finding the
trajectory of an object’s state. This chapter will define a framework for tracking,
namely the so-called predict-match-update framework, see Fig. 9.6. Without loss of
generality we will below assume the state is only the position of the object, meaning
that the state vector we seek to find is −→s (t) = [x(t), y(t)]. Below the framework is
built up one block at a time.

9.1 Tracking-by-Detection

We can use some of the methods described previously in the book to detect an
object. If we do this in each image and simply concatenate the positions we could
argue that we are doing tracking. This approach is, however, not considered tracking
since each detection is done independently of all other detections, i.e., no temporal
information is included.

The most simple form of tracking is when the estimated position is updated using
previous states. The current and previous states are combined in order to smooth the
current state. The need for this is motivated by the fact that noise will always appear
in the estimated position.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_9, © Springer-Verlag London Limited 2012
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Table 9.1 The position of an object over time

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
X 1 2 4 5 4 6 8 9 9 7 3 2 2 · · ·
Y 10 8 8 7 6 4 4 3 2 2 2 2 4 · · ·

Fig. 9.1 The trajectory of an
object over time

Fig. 9.2 (a) Framework for updating the state. (b) The effect of updating the states. The blue curve
is the true trajectory of the object. The black curve is the detected trajectory and the red curve is
the smoothed trajectory

Smoothing can be implemented by calculating the average of the last N states.
The larger N is, the more smooth the trajectory will be. As N increases so does
the latency in the system, meaning that the updated state will react slow to rapid
position changes. For example if you are tracking a car that is accelerating hard or is
doing an emergency break. This slow reaction can be counteracted by also including
future states in the update of the current state, but such an approach will delay the
output from the system. Whether this is acceptable or not depends on the applica-
tion. Another way of counteracting the latency is to use a weighted smoothing filter.
Instead of adding N positions together and dividing by N, we weight each position
according to its age. So the current state has the highest weight, the second newest
state has the second highest weight etc. No matter which smoothing method is used
to update the state, it is a compromise between smoothness and latency. In Fig. 9.2
the updating of the state is illustrated. The history-block contains previous states.
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Fig. 9.3 (a) Framework for updating and predicting the state. (b) The effect of predicting the
position of the object in the next image

9.2 Prediction

Very often the object we want to follow is moving much slower than the framerate
of the camera. As a consequence the object is not moving very much from one
image to the next. So, having located an object in one image will allow us to predict
where the object will approximately be in the next image. We want to exploit this
fact when detecting the object. This is done by introducing a ROI centered at the
position where we predict the object to be and only analyze the pixels within the
ROI, see Fig. 9.3. This will save a significant amount of processing time.

The question is now where we predict the object to be. For this purpose a motion
model is introduced, that is, a model explaining how the object is moving. The most
simple model is a zeroth order linear motion model. It predicts the object to be
exactly at the same position in the next image as it is in the current image. The next
of the linear motion models is the first order linear motion model, which includes the
velocity of the object. Given the current position −→p (t) = [x(t), y(t)] and velocity−→v (t) = [vx(t), vy(t)] of the object, the predicted position will be

−→p (t + 1) = −→v (t) · �t + −→p (t) (9.1)

where −→p (t + 1) is the predicted position and �t is the time between −→p (t) and−→p (t + 1). Often the framerate is constant and �t is simply the number of images
predicted into the future. Usually we are just interested in predicting one image
ahead and hence �t can be removed from the equation.

The second order linear motion model also includes the current acceleration of
the object −→a (t) = [ax(t), ay(t)] and the predicted position is given as

−→p (t + 1) = 1

2
· −→a (t) · �t2 + −→v (t) · �t + −→p (t) (9.2)

Again, with a fixed framerate and only predicting the next image, the two �

terms become 1 and can therefore be ignored.
Motion models are not necessarily linear. If we for example are following an

object being thrown, we need a model that includes gravity. Another example could
be when tracking an object moving in a circle, the motion model would of course
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be that of a circle, or if we are tracking a drunken human, the motion model might
be more like a sinus curve than a straight line.

Sometimes the movement of an object cannot be explained by just one motion
model. If we for example are tracking a fish in an aquarium, we will need two motion
models. One model for when the fish is just swimming slowly around and another
model for when the fish needs to get away from something fast. The first type of
movement could be modeled by a first order linear model, while the other type of
movement could be modeled by a random direction with maximum acceleration.
Having two (or more) motion models will result in two (or more) ROIs.

No matter how good our motion model is, it is still just a model of the movement,
i.e. an approximation. The object is therefore not likely to be located exactly at
the predicted location. For this reason we look for the object within a ROI. The
question is now how to define the size of the ROI. The simplest approach is to try
different sizes and see which works best. A more scientific approach, which will
render a smaller ROI and hence save processing time, is to define the size based on
the uncertainty of the prediction. Say we in the last image predicted the x-position
of the object to be at position 370, but found the object at position 350. Whether this
difference is due to a bad prediction or a bad detection we do not know. What we do
know is that there is some uncertainty in the x-direction. The bigger the uncertainty
is, the bigger the ROI should be in the x-direction. Normally it is not recommended
to let the difference control the ROI directly since it is sensitive to noise. A more
conservative way of changing the ROI based on the difference is here shown for the
width of the ROI:

width(t + 1) = α · ∣∣x(t) − x(t)
∣∣ + (1 − α) · WIDTH (9.3)

where α is a small value, x(t) is the predicted x-value of the object at time t , x(t) is
the detected x-value of the object at time t , and WIDTH is a predefined minimum
width of the ROI. The same can of course be done in the vertical direction.

Similar to the uncertainty of the prediction, we also have an uncertainty associ-
ated with the detection. Imagine that we in one image have a bad segmentation of
the object we are tracking. The effect of this could be that we only detect a small
part of the object. We can still calculate the position of the object, but the number
of object pixels used in this calculation is much smaller than in previous images,
see Fig. 9.4. This would suggest that the detection has become more uncertain and
ultimately we could have a situation where the object is not found and hence no
detection is available. In both cases it might be better using the prediction than the
detection when updating the state. Following along this line of thinking, the update
of the state could be

−→s (t) = w1

w1 + w2
· −→p (t) + w2

w1 + w2
· −→p (t) (9.4)

where w1 should be controlled by the uncertainty associated with the prediction and
w2 by the uncertainty associated with the detection.
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Fig. 9.4 The number of
object pixels as a function of
time. Note how the number
suddenly drops

Predicting is a delicate matter as we are talking about foreseeing the future. Care
should therefore be taken before using any of the methods and equations presented
above. But prediction in its simple form with a zeroth order or first order motion
model, and a large ROI, is nearly always a good idea. So is the notion of including
predicted values in the update when no detection is available.

9.3 Tracking Multiple Objects

Sometimes we need to track multiple objects at the same time. If the objects are
different we can duplicate the methods mentioned above and track each object indi-
vidually. When the objects are similar, however, we need a coherent framework that
can simultaneous track multiple objects.

In the top row of Fig. 9.5 we see two similar objects that we want to track. Re-
member that tracking is about finding the trajectory of the object over time, meaning
that we need to figure out which object is which in each image. This is known as a
data association problem in the sense that we need to assign some data (here two
detected objects) to their respective trajectories. In the figure it is obvious that we
have an object to the left moving downwards while the object to the right moves up-
wards, but how does the computer infer this? The solution is to predict the ROI for
each object, as discussed above, and investigate which of the two objects best match
the respective ROIs. This is illustrated in the bottom row in Fig. 9.5. By includ-
ing the matching block into the tracking framework, we have now arrived at its final
structure, see Fig. 9.6. This tracking framework is denoted the predict-match-update
framework.

Unfortunately, tracking of multiple objects is not always as simple as illustrated
in Fig. 9.5. When objects move they are likely to occlude each other, which will
result in objects disappearing or new objects appearing. Moreover, sometimes the

Fig. 9.5 Top row shows four
consecutive images
containing two moving
objects. In the bottom row the
dashed red boxes indicate the
predicted ROIs. The numbers
(#1 and #2) indicate which
trajectory an object is found
to belong to
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Fig. 9.6 The
predict-match-update
tracking framework

Fig. 9.7 (a) Illustration of
merged and split objects.
(b) Illustration of noise, new
object and lost objects

segmentation algorithm might fail resulting in an object being lost and/or new ob-
jects appearing. All these issues might occur simultaneously clouding the matter
further. In Fig. 9.7 some of these phenomena are illustrated. In Fig. 9.7(a) we have
a situation where one object is occluded by another object when entering the im-
age’s field of view. This continues until they split into two objects. We also see a
situation where two objects merge into one and later split into two objects again. In
Fig. 9.7(b) we first see a situation where a new object is detected in the middle of
the scene and below a situation where an object disappears behind a static object in
the scene before reappearing again. Last we see a situation where the detection of an
object is incorrect resulting in the predicted object being lost and three new objects
appearing.

One approach for resolving these issues is to measure how many of the detected
objects are within each predicted ROI. In Fig. 9.8(a) we show an example where we
have predicted five objects and detected five objects.

The zeros and ones in the table in Fig. 9.8(b) indicate if a detected object is within
a predicted object’s ROI. The numbers in the row (green) and column (red) outside
the table indicate the sum of a particular row or column. Entries in the table those
row and column sums are both one, have a unique match and can be assigned to each
other. This will give that object 1 is assigned to trajectory B and object 2 to trajec-
tory A. The row sum of the detected object 5 is equal to 0 meaning that this is a new
object. The column sum of the predicted object E is 0 meaning that object E is lost.
Next we look at non-assigned predicted objects with a column sum equal to 1 and
assign these objects. In our example this will mean that detected object 4 is assigned
to trajectory D. We therefore set entry (C,4) = 0 in the table and can now assign
object 3 to trajectory C since both its row and column sums are one. The final result
for this image is shown to the right in Fig. 9.8(b). Looking at Fig. 9.8(a) it might be
reasonable to assume that object 5 should be assigned to trajectory E. We can handle
such situations by increasing the size of the ROI, but this is a dangerous path to fol-
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Fig. 9.8 (a) The blue dots are the detected objects and X illustrates the predicted objects. The
dashed red boxes indicate the predicted ROIs. (b) A table indicating which detected objects that
match which predicted objects

low since this will in general increase the number of ambiguities. A better approach
is to delay the decision about whether an object is new or lost for some time.

If a lost object is present in an image, the trajectory is updated with the predicted
value instead of the missing detection. The more times this is done, the more un-
certain this trajectory becomes and hence the size of the ROI should be increased
accordingly. Moreover, if no detections have been associated to a trajectory for some
time, it should be concluded that the object is lost and its trajectory terminated.

For a new object to be accepted as a truly new object the following can be done.
The first time a new object is detected a temporary trajectory is defined and the
object is being tracked. When it has been successfully tracked for a certain amount
of time it can be concluded that this is indeed a new object and the trajectory is no
longer temporary. If no detected object is associated to the temporary trajectory for
some time, the temporary trajectory is terminated.

9.3.1 Good Features to Track

Instead of only focusing on the position when tracking objects we can also include
the features we are using to classify the different objects. This basically means we
are combining the matching problem describe above with the feature classification
problem discussed in Chap. 7. In practice we base the matching on the approach
from Sect. 7.3 and simply add the x- and y-positions of the object as two additional
features. The binary table in Fig. 9.8(b) is then replaced by a table where each entry
indicates the distance from a predicted object and to a detected object. The uncer-
tainties related to the predicted and detected objects could/should be incorporated as
weights as discussed in Sect. 7.4. To binarize this new table each entry is thresholded
and we can therefore apply the same matching mechanisms as described above.

When tracking objects we can of course use any of the features described in
Chap. 7. But when it comes to tracking multiple objects we usually require more
details features. Below we describe two approaches namely color-based and texture-
based.
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Fig. 9.9 A color histogram
with ten bins and how an
object will be represented
using the color histogram
bins as features

The average color of an object can be a strong feature as it is relatively indepen-
dent on how the shape and size of an object changes. Also, if a color space, where
the intensity and chromaticity are separated, is used, the color feature is relatively
robust to changes in the lighting. Sometimes an object contains multiple colors and
the average may not be the best way to represent such an object. Instead a color
histogram can be used. No matter which color space is used the different color com-
ponents are concatenated and hence results in one histogram. Each histogram bin is
normalized so the sum of all bins is equal to one. This makes the color histogram
invariant to the scale of the object. To reduce the number of features, the resolution
of the histogram bins is usually coarse. An example of a color histogram with ten
bin, i.e., ten features, can be seen in Fig. 9.9.

While a color histogram is a better representation than the average color, it does
not contain any information about spatial distribution of the different colors. An-
other approach is therefore to divide the object into a number of regions (usually
horizontal dividers) and then represent each region by its average color (or color
histogram). This approach is obvious sensitive to object rotation and care should
therefore be taking before applying it.

As mentioned above the framerate will often be high compared to the movement
of the object and it can therefore be assumed that the object does not change sig-
nificantly from image to image. Inspired by this notion we can simply represent the
object by its pixels and try to refind the object in the next image using template
matching, see Sect. 5.2.1. For this to work the object (or a part of it) needs to be
represented by a rectangle, but more importantly it is assumed that this rectangle
is unique compared to the surroundings. Uniqueness here means the rectangle con-
tains texture—the more the better—which is not repeated in the background. The
level of textureness can be investigated by looking at the amount of edges in the
rectangle. If many strong edges are present with different orientation, then there is
a high likelihood that the rectangle is unique and can be refound in the next im-
age. One concrete way of measuring this is to correlate the rectangle with the Sobel
kernels from Sect. 5.2.2. This will produce two edge images. For each edge image
the absolute value of each edge pixel is found and all these values are summed, and
checked if the sum is above a threshold value. We do the same for the other edge
image and if both sums are above the threshold value the rectangle is concluded to
contain a high level of textureness, hence be a good template to track.

No matter which of these features are applied in tracking, care should be taking
when combining them with the position and/or other features in order to ensure
the different features are scaled properly, see Sect. 7.3. Another important issue is
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that the model for a particular object is very likely to change over time and should
therefore be updated from image to image. The simple solution is to replace the
model with the detection, but this is dangerous since the detection could be incorrect.
A gradual update scheme, like in Eq. 9.3, is therefore suggested.

9.4 Further Information

An excellent way of implementing the predict-match-update framework is through
the Kalman filter [19]. It does not cover the detection and matching blocks, but it has
built-in mechanisms for updating the state based on the detections, the predictions
and the related uncertainties. When is comes to tracking noisy detections, a branch
of methods exist, which do not only predict where the objects are most likely to
be, but also predict a number of likely hypotheses and maintain those over time.
Such methods are known as Particle Filters, the Condensation algorithm, Sequential
Monte Carlo filtering, or Multiple Hypothesis filters. One place to start a journey
into such methods is [11].

Color features can be improved by also including information about position.
One such method is the color correlogram [20]. But when it comes to more advanced
tracking, texture is often preferred over color. A good tracking framework based on
texture is the KLT-tracker [16]. It finds candidate rectangles containing a high level
of texture and tracks these rectangles over time. The rectangles are small and a
number of these should therefore be used to track a large object. The tracker detects
when the texture of a particular rectangle has changed too much compared to when
it was initiated and the tracker then reinitializes a new rectangle to be tracked.

If the texture changes too much between two images, template matching-based
methods will not suffice and more advanced methods are required. A good example
is the SIFT algorithm [13]. It represents the pixels in a rectangle by their gradient
information. This is done in a clever way making the representation invariant to ro-
tation and scale. In Fig. 9.10 an example is shown where the object is standing still,
but the camera is moving. This is equivalent to when the camera is fixed and the
object is moving. The SIFT algorithm is here used to find and track 100 points be-
tween two images. Note that such approaches often refer to the process of relocating
features as finding the correspondence rather than tracking.

9.5 Exercises

Exercise 1: Explain the following concepts: state vector, trajectory, prediction, mo-
tion model, tracking, tracking-by-detection, data association, predict-match-update
framework.
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Fig. 9.10 Tracking using SIFT. (a) Input. (b) Each red cross corresponds to the center of a small
rectangle containing pixels with high gradient information, i.e., a good region to track. 100 good
features are shown. (c) The green lines illustrate where the features have been refound in the new
image. Note that only ten features are shown to increase visibility

The following positions of an object have been detected:

Time 1 2 3 4 5 6 7 8 9 10 11 12 13

X 1 2 4 5 4 6 8 9 9 7 3 2 2
Y 10 8 8 7 6 4 4 3 2 2 2 2 4

Exercise 2: What is the velocity of the object at time = 12?
Exercise 3: What is the acceleration of the object at time = 12?
Exercise 4: Where will the object be predicted to be at time = 12, if a first order
motion model is applied?

Exercise 5: Where will the object be predicted to be at time = 12, if a second order
motion model is applied?

Exercise 6: It is desired to find the state of the object using information from both
the detection and the prediction. The uncertainty associated with the prediction
should be twice as high as the uncertainty associated with the detection. A first
order motion model is applied. What is the state at time = 12?
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Exercise 7: A system is tracking multiple objects. In one frame the relationship
between predicted and detected objects is as shown below. Find the matching be-
tween detected and predicted objects together with any new/lost objects.

Additional exercise: What is the Kalman Filter and how does it operate?





10Geometric Transformations

Most people have tried to do a geometric transformation of an image when prepar-
ing a presentation or when manipulating an image. The two most well-known are
perhaps rotation and scaling, but others exist. In this chapter we will describe how
such transformations operate and discuss the issues that need to be considered when
doing such transformations.

The term “geometric” transformation refers to the class of image transformation
where the geometry of the image is changed but the actual pixel values remain
unchanged.1

Let us recall from the previous chapters that an image is defined as f (x, y),
where f (·) denotes the intensity or gray-level value and (x, y) defines the position
of the pixel. After a geometric transformation the image is transformed into a new
image denoted g(x′, y ′), where the tic (’) means position in g(x, y). This might
seem confusing, but we need some way of stating the position before the transfor-
mation (x, y) and after the transformation (x′, y ′).

As mentioned above the actual intensity values are not changed by the geometric
transformation, but the positions of the pixels are (from (x, y) to (x ′, y ′)). So if
f (2,3) = 120 then in general g(2,3) �= 120. A geometric transformation basically
calculates where the pixel at position (x, y) in f (x, y) will be located in g(x ′, y ′).
That is, a mapping from (x, y) to (x′, y ′). We denote this mapping as

x ′ = Ax(x, y) (10.1)

y ′ = Ay(x, y) (10.2)

where Ax(x, y) and Ay(x, y) are both functions, which map from the position (x, y)

to x′ and y ′, respectively.

1For readers interested in a quick refreshment or introduction to linear algebra—in particular vec-
tors and matrices—please refer to Appendix B.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_10, © Springer-Verlag London Limited 2012
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10.1 Affine Transformations

The class of affine transformations covers four different transformations, which are
illustrated in Fig. 10.1. These are: translation, rotation, scaling and shearing.

10.1.1 Translation

Let us now look at the transformations in Fig. 10.1 and define their concrete map-
ping equations. Translation is simply a matter of shifting the image horizontally
and vertically with a given off-set (measured in pixels) denoted �x and �y. For
translation the mapping is thus defined as

x ′ = x + �x

y ′ = y + �y
⇒

[
x ′
y ′

]
=

[
x

y

]
+

[
�x

�y

]
(10.3)

So if �x = 100 and �y = 100 then each pixel is shifted 100 pixels in both the
x- and y-direction.

10.1.2 Scaling

When scaling an image, it is made smaller or bigger in the x- and/or y-direction. Say
we have an image of size 300 × 200 and we wish to transform it into a 600 × 100
image. The x-direction is then scaled by: 600/300 = 2. We denote this the x-scale
factor and write it as Sx = 2. Similarly Sy = 100/200 = 1/2. Together this means
that the pixel in the image f (x, y) at position (x, y) = (100,100) is mapped to a new
position in the image g(x ′, y′), namely (x′, y′) = (100 · 2,100 · 1/2) = (200,50). In
general, scaling is expressed as

x′ = x · Sx

y ′ = y · Sy

⇒
[
x′
y′

]
=

[
Sx 0
0 Sy

]
·
[
x

y

]
(10.4)

10.1.3 Rotation

When rotating an image, as illustrated in Fig. 10.1(d), we need to define the amount
of rotation in terms of an angle. We denote this angle θ meaning that each pixel in
f (x, y) is rotated θ degrees. The transformation is defined as

x′ = x · cos θ − y · sin θ

y ′ = x · sin θ + y · cos θ
⇒

[
x′
y ′

]
=

[
cos θ − sin θ

sin θ cos θ

]
·
[
x

y

]
(10.5)
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Fig. 10.1 Different transformations
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Note that the rotation is done counterclockwise since the y-axis is pointing down-
wards. If we wish to do a clockwise rotation we can either use −θ or change the
transformation to

x′ = x · cos θ + y · sin θ

y ′ = −x · sin θ + y · cos θ
⇒

[
x′
y ′

]
=

[
cos θ sin θ

− sin θ cos θ

]
·
[
x

y

]
(10.6)

10.1.4 Shearing

To shear an image means to shift pixels either horizontally, Bx , or vertically, By .
The difference from translation is that the shifting is not done by the same amount,
but depends on where in the image a pixel is. In Fig. 10.1(e) Bx = −0.5 and By = 0.
The transformation is defined as

x ′ = x + y · Bx

y′ = x · By + y
⇒

[
x′
y ′

]
=

[
1 Bx

By 1

]
·
[
x

y

]
(10.7)

10.1.5 Combining the Transformations

The four transformations can be combined in all kinds of different ways by multiply-
ing the matrices in different orders, yielding a number of different transformations.
One is shown in Fig. 10.1(f). Instead of defining the scale factors, the shearing fac-
tors and the rotation angle, it is common to merge these three transformation into
one matrix. The combination of the four transformations is therefore defined as

x′ = a1 · x + a2 · y + a3

y′ = b1 · x + b2 · y + b3
⇒

[
x′
y ′

]
=

[
a1 a2
b1 b2

]
·
[

x

y

]
+

[
a3
b3

]
(10.8)

and this is the affine transformation. Below the relationships between Eq. 10.8 and
the four above mentioned transformations are listed.

a1 a2 a3 b1 b2 b3

Translation 1 0 �x 0 1 �y

Scaling Sx 0 0 0 Sy 0
Rotation cos θ − sin θ 0 sin θ cos θ 0
Shearing 1 Bx 0 By 1 0

Often homogeneous coordinates are used when implementing the transformation
since they make further calculations faster. In homogeneous coordinates, the affine
transformation becomes⎡

⎣x′
y ′
1

⎤
⎦ =

⎡
⎣a1 a2 a3

b1 b2 b3
0 0 1

⎤
⎦ ·

⎡
⎣x

y

1

⎤
⎦ (10.9)

where a3 = �x and b3 = �y.
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Fig. 10.2 (a) Forward
mapping. (b) Backward
mapping

10.2 Making It Work in Practice

In terms of programming, the affine transformation consists of two steps. First the
coefficients of the affine transformation matrix are defined. Second we go though all
pixels in the image f (x, y) one at a time (using two for-loops as seen in Sect. 4.7)
and for each pixel we find its new position in g(x ′, y′) using Eq. 10.9. This process
is known as forward mapping, i.e., mapping each pixel from f (x, y) to g(x′, y ′),
see Fig. 10.2(a).

At first glance this simple process seems to be fine, but unfortunately it is not! Let
us have a closer look at the scaling transformation in order to understand the nature
of the problem. Say we have an image of size 300 × 200 and want to scale this to
510 × 200. From above we can calculate the scaling factors as Sx = 510/300 = 1.7
and Sy = 200/200 = 1. Using Eq. 10.4 the pixel positions in a row of f (x, y) are
mapped in the following manner:

x 0 1 2 3 4 5 6 7 8 · · · 300

x′ 0 1.7 3.4 5.1 6.8 8.5 10.2 11.9 13.6 · · · 510

We can observe that “holes” are present in g(x′, y ′). If for example 10.2 is
rounded off to 10 and 11.9 to 12, then x′ = 11 will have no value, hence a hole
in the image output. In Fig. 10.3 we have used forward mapping to scale image
10.1(a). The holes can be seen as the black pattern.

If the scaling factor is smaller than 1 then a related problem would occur, namely
that multiple pixels from f (x, y) are mapped to the same pixel in g(x ′, y′). This is
not critical in terms of how the output would look like, but mapping multiple pixels
to the same pixel in g(x ′, y ′) is computationally inefficient. Both these issues are
present in all geometric transformations.
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Fig. 10.3 Image scaling using forward mapping. Notice the black pattern, which is a result of the
inherent problem related to forward mapping

10.2.1 Backward Mapping

The solution is to avoid forward mapping and instead use backward mapping. Back-
ward mapping maps from g(x′, y′) to f (x, y). That is, it goes through the output
image, g(x′, y ′), one pixel at a time (using two for-loops) and for each position
(x ′, y′) it uses the inverse transformation to calculate (x, y). That is, it finds out
where in the input image a pixel must come from in order to be mapped to (x′, y ′).
The principle is illustrated in Fig. 10.2(b). The inverse transformation is found by
matrix inversion of the transformation matrix as

⎡
⎣x

y

1

⎤
⎦ =

⎡
⎣a1 a2 a3

b1 b2 b3
0 0 1

⎤
⎦

−1

·
⎡
⎣x ′

y ′
1

⎤
⎦ (10.10)

For scaling, rotation and shearing the inverse matrices look like the following:

Scaling:

⎡
⎣1/Sx 0 0

0 1/Sy 0
0 0 1

⎤
⎦ , Rotation:

⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦

Shearing:
1

1 − BxBy

⎡
⎣ 1 −Bx 0

−By 1 0
0 0 1 − BxBy

⎤
⎦

So, if we want to implement a program that as input takes an image f(x,y) and
as output gives a scaled image g(x’,y’), then it could look something like this in
C-code:

Image_Width_Output = Image_Width_Inpu t ∗ Sx ;
Image_Heigh t_Outpu t = I m a g e _ H e i g h t _ I n p u t ∗ Sy ;
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f o r ( y _ o u t p u t = 0 ; y _ o u t p u t < Image_Heigh t_Outpu t ;
y _ o u t p u t ++)

{
f o r ( x _ o u t p u t = 0 ; x _ o u t p u t < Image_Width_Output ;

x _ o u t p u t ++)
{

x _ i n p u t = 1 / Sx ∗ x _ o u t p u t ;
y _ i n p u t = 1 / Sy ∗ y _ o u t p u t ;
g ( x _ o u t p u t , y _ o u t p u t ) = f ( x _ i n p u t , y _ i n p u t ) ;

}
}

where Sx and Sy are the scale factors and (x′, y′) is written as (x_output,y_output)
and (x,y) is written as (x_input,y_input).

10.2.2 Interpolation

As can be seen in Fig. 10.2 backward mapping is very likely to result in a value of
(x, y) which is not possible. For example, what is the intensity value of f (3.4,7.9)?
It is undefined and we therefore interpolate in order to find an appropriate intensity
value. The most simple form of interpolation is called zeroth-order interpolation.
It rounds off to the value of the nearest possible pixel, i.e., f (3.4,7.9) → f (3,8).
A better, but also more computational demanding, approach is to apply first-order
interpolation (a.k.a. bilinear interpolation), which weights the intensity values of the
four nearest pixels according to how close they are. The principle is illustrated in
Fig. 10.4. The area of the square wherein (x, y) is located is 1. Now imagine that
we use the position (x, y) to divide this square into four sub-regions. The area of
each of these sub-regions define the weight of one of the four nearest pixels. That is,
the area dx · dy becomes the weight for the pixel f (x1, y1) and so forth. The final
intensity value is then found as

g(x ′, y′) = f (x0, y0) · (1 − dx)(1 − dy)

+ f (x1, y0) · (dx)(1 − dy)

+ f (x0, y1) · (1 − dx)(dy)

+ f (x1, y1) · (dx · dy) (10.11)

Note that this equation can be rewritten more compactly for an efficient software
implementation. Note also that more advanced methods for interpolation exist, but
this is beyond the scope of this text.
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Fig. 10.4 Bilinear
interpolation. The final pixel
value becomes a weighted
sum of the four nearest pixel
values

10.3 Homography

Geometric transformation can also be used to correct errors in images. Imagine
a telescope capturing an image of a star constellation. The image is likely to be
distorted by the fact that light is bent in space due to the gravitational forces of the
stars and also by the changing conditions in the Earth’s atmosphere. Since the nature
of these phenomena is known, the transformation they enforced on the image can
be compensated for by applying the inverse transformation.

Another, and perhaps more relevant, error that can be corrected by a geomet-
ric transformation is keystoning. A keystone is the top-most block in an arch, i.e.,
an arch-shaped doorway. Since the keystone is wedge-shaped it is used to describe
wedge-shaped images. Such an image is obtained when capturing a square using a
tilted camera or when projecting an image onto a tilted plane, see Fig. 10.5. Since
this is a common phenomenon, most video projectors have a built-in geometric map-
ping function, which can correct for keystoning.

Let us investigate the correction of keystoning in more depth by looking at a con-
crete example. Imagine you are designing a simple game where a projector projects
circles onto a table and a camera captures your finger when touching the table. The

Fig. 10.5 Keystoning
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Fig. 10.6 The coordinate system of the image (x, y) and the coordinate system of the projector
(x ′, y′) seen from the image’s point of view. (b) The circles are projected from the projector in
order to find corresponding points in the two coordinate systems

purpose of the game could then be to see how many circles you can touch in a prede-
fined time period. For such a system to work you need, among other things, to know
what a detected pixel coordinate (the position of the finger) corresponds to in the
image projected onto the table. If both camera and projector are tilted with respect
to the table, then two keystone errors are actually present. In general, the geometric
transformation which maps from one plane (camera image) to another (projected
image) is known as a projective transformation or homography. It can be calculated
in the following way using the Direct Linear Transform [10].

First have a look at Fig. 10.6(a) to see what we are dealing with. To the left you
see an illustration of two coordinate systems. The (x, y) coordinate system is the
coordinate system of the image and the (x′, y′) coordinate system is the coordinate
system of the projector seen from the image’s point of view. Or in other words, if
you make the projector project two perpendicular arrows onto a plane (for example
a table) and capture a picture of the table, then the perpendicular arrows will look
like the x′ and y ′ arrows. So the transformation we are after should map from (x, y)

to (x′, y′).
The use of a homography is not limited to finding the correspondence between

an image and a projector. Imagine we have a robot arm that should pick something
up from a table. A camera captures an image of the table, finds the object of interest
and send its position to the robot. The table is the robot’s coordinate system meaning
that the origin is one of the corners and the x′ and y′ axes are two perpendicular
edges of the table. The image’s coordinate system is now x and y, and we need to
find a transformation from (x, y) to (x′, y′). So the exact same situation as with the
projector and hence the exact same solution.

From the theory of homography we know that the mapping between the two
coordinate systems is

⎡
⎣h · x′

h · y′
h

⎤
⎦ =

⎡
⎣a1 a2 a3

b1 b2 b3
c1 c2 1

⎤
⎦ ·

⎡
⎣x

y

1

⎤
⎦ (10.12)

From this it follows that
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h · x ′

h
= x′ = a1 · x + a2 · y + a3

c1 · x + c2 · y + 1
(10.13)

h · y ′

h
= y′ = b1 · x + b2 · y + b3

c1 · x + c2 · y + 1
(10.14)

Rewriting into matrix form we have

[
x′
y ′

]
=

[
x y 1 0 0 0 −x · x′ −y · x ′
0 0 0 x y 1 −x · y′ −y · y ′

]
· �d (10.15)

where �d = [a1, a2, a3, b1, b2, b3, c1, c2]T .
In order to find the values of the coefficients we need to know the positions of

four points in both coordinate systems, i.e., eight equations with eight unknowns.
We could for example send out four points from the projector and then find their
positions (automatic or manual) in the image, see Fig. 10.6(b). Then we would have
the positions of four corresponding points in both coordinate systems:

(x1, y1) ↔ (x ′
1, y

′
1) (x2, y2) ↔ (x ′

2, y
′
2) (x3, y3) ↔ (x ′

3, y
′
3)

(x4, y4) ↔ (x ′
4, y

′
4) (10.16)

If we enter these points into the equations we end up with the following linear
system �e = K �d :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′
1

y′
1

x′
2

y′
2

x′
3

y′
3

x′
4

y′
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 1 0 0 0 −x1 · x ′
1 −y1 · x′

1
0 0 0 x1 y1 1 −x1 · y ′

1 −y1 · y′
1

x2 y2 1 0 0 0 −x2 · x ′
2 −y2 · x′

2
0 0 0 x2 y2 1 −x2 · y ′

2 −y2 · y′
2

x3 y3 1 0 0 0 −x3 · x ′
3 −y3 · x′

3
0 0 0 x3 y3 1 −x3 · y ′

3 −y3 · y′
3

x4 y4 1 0 0 0 −x4 · x ′
4 −y4 · x′

4
0 0 0 x4 y4 1 −x4 · y ′

4 −y4 · y′
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
a3
b1
b2
b3
c1
c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.17)

The coefficients of the transformation are now found as �d = K−1�e, which is
solved using linear algebra, see Appendix B. So, what we end up with are values for
the coefficients a1, a2 etc. If we insert these into Eqs. 10.13 and 10.14 we can insert
a point (x, y) and calculate where that point will end up in the other coordinate
system, i.e., (x′, y′). If we want to reverse the mapping, so we can go from (x′, y ′)
to (x, y), we simply reverse the four points so that x ′

1 become x1, x′
2 become x2 etc.

These new points are inserted into Eq. 10.17 and we can find the coefficients of the
reverse mapping.2

2In Chaps. 12 and 13 homography is used in two concrete examples.
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Fig. 10.7 The importance of choosing the four points far apart. The blue points are used for
calculating the mapping between the two coordinate systems, whereas the red points are mapped
from image 1 to image 2 using this mapping

It is important that the four points we use are spread out across the entire image.
This will ensure a good transformation. If your points are too close together, then
the transformation might not be applicable for the entire image, but only for the
region wherein the points are located. This is illustrated in Fig. 10.7. The top row
shows two images of the same scene but captured from two different viewpoints. In
order to learn the mapping between the two, the coordinates of the blue points are
measured in the two images. From these points we can solve Eq. 10.17 and hence
obtain the two Eqs. 10.13 and 10.14. We now use these equations to map the red
points in image 1 to image 2. We can see that the mapped points in image 2 are in
agreement with the red points in image 1. The same is now done for the images in
the second row only now the blue points are located close to each other. The effect
of this is that when mapping the red points from image 1 to image 2, they end up in
incorrect locations. The further away from the blue points a red point is in image 1,
the worse the mapping. In fact, the red point furthest away in image 1 is mapped to a
position outside image 2 and therefore not present in image 2. This example should
underline the very important point about choosing the four points as far away from
each other as possible.
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10.4 Further Information

Equation 10.12 might seem a bit strange an unmotivated. An explanation requires
insides into the projective aspects of a camera, meaning how a 3D world point is
mapped into the sensor in the camera. An approximation of this mapping is the so-
called pin-hole model and from that Eq. 10.12 can be derived. The pin-hole model
is an approximation meaning that the equation is not a perfect mapping. If a more
precise mapping is required, then look into the field of (geometric) camera calibra-
tion. While the resulting math is a bit hard, the solution is simple. You print a paper
containing a chessboard and glue it onto a rigid object. Capture a number of images
where you hold the chessboard at different angles with respect to the camera and let
a program do the rest. The output from the program is a function that maps between
the two coordinate systems (x, y) and (x′, y′). Both OpenCV and Matlab have good
implementations of this method.

Equation 10.12 can actually also be made more precise by using more than four
corresponding points, the more the better. This corresponds to expanding Eq. 10.17
by adding more equations. We will then have more equations than unknowns, which
is known as an overdetermined system.

Yet another method for finding the mapping between two coordinate systems
is the use of a look-up-table (LUT). We find a number of corresponding points
(usually many more than four), but instead of using them to calculate the mapping
we simply store them in a file. Later when the system needs to map a known point
P(x, y) from f (x, y) to a point P ′(x′, y ′) in the other coordinate system g(x′, y ′),
we first find the four points in the file that are closest to P(x, y) and then combine
their respective mappings into P ′(x′, y′). Say the four closest points are P1(x, y),
P10(x, y), P4(x, y), and P7(x, y). One approach is then to calculate the Euclidean
distance between each point and P(x, y), yielding d1, d10, d4, and d7. The mapping
of P(x, y) can now be calculated as

P ′(x′, y′) = 1/d1

w
· P ′

1(x
′, y′) + 1/d10

w
· P ′

10(x
′, y′)

+ 1/d4

w
· P ′

4(x
′, y ′) + 1/d7

w
· P ′

7(x
′, y ′) (10.18)

w = 1

d1
+ 1

d10
+ 1

d4
+ 1

d7

where P ′
1(x

′, y ′) is the mapping value for P1(x, y) found in the LUT.

10.5 Exercises

Exercise 1: Explain the following concepts: homogeneous coordinates, interpola-
tion, homography.

Exercise 2: Explain the following concepts and the underlying math: Translation,
scaling, rotation, shearing, affine transformation.
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Exercise 3: An image is first rotated 10° and then scaled with a factor 2 in both
horizontal and vertical direction. Next, the image is scaled with a factor 0.5 in
both horizontal and vertical direction and rotated −10°. Do we now have the same
image as we started out with?

Exercise 4: An image is first rotated 10° and then scaled with a factor 2 in both
horizontal and vertical direction. Would the same image appear if the order of the
rotation and scaling is reversed (i.e., first scaling and then rotation)?

Exercise 5: An input image f (x, y) consists of a black background with a white
rectangle on top. The corners of the rectangle are located at: (50,50), (50,60),
(60,50) and (60,60). We want to scale the image with a factor 2 in the horizontal
direction and a factor 1.5 in the vertical direction. What will the area of the white
rectangle be after the scaling?

Exercise 6: f (x, y) is rotated 15◦ around the point (55,55). Where will the corner
(50,50) be located after the rotation?

Exercise 7: f (x, y) is sheared with Bx = 2 and By = −1.5. Where will the corner
(50,50) be located after the shearing?

Exercise 8: In an image the following pixel values are present: f (10,10) = 10,
f (10,11) = 12, f (11,10) = 11 and f (11,11) = 9. During a backward mapping
it is found that g(100,100) = f (10.3,10.8). What value will g(100,100) have if
we use i) zero-order interpolation? ii) first-order interpolation?

Exercise 9: The mapping between two coordinate systems (x, y) and (x′, y ′) is de-
fined via the LUT below. Which position does the point (x, y) = (8,6) correspond
to in (x ′, y ′)?

(x, y) (1,4) (3,4) (6,4) (10,4) (2,7) (5,7) (10,7) (3,10) (5,10) (9,9)

(x′, y′) (0,1) (3,1) (5,1) (10,2) (1,4) (4,4) (9,5) (1,7) (3,8) (7,7)

Additional exercises: What is camera calibration? What can it be used for and how
does it work?
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In some situations the end goal of video and image processing is not to extract
information, but rather to create some kind of visual effect. Or in other words, just
for the fun of it. This can be done in many different ways, where some are more
interesting than others. In this chapter we present ten different methods for creating
visual effects. The first five are based on manipulation of the actual pixel values and
the last five on geometric transformations. The different effects are illustrated on
one of the two images in Fig. 11.1.

11.1 Visual Effects Based on Pixel Manipulation

The number of different methods based on manipulating the actual pixel values is
endless, but obviously some have a better effect that others. Below we first focus on
utilizing some of the methods presented in earlier chapters and see how they can be
used to create visual effects. Hereafter, we present two methods based on specific
algorithms developed just for the purpose of creating a visual effect.

Fig. 11.1 Input images for the visual effects

T.B. Moeslund, Introduction to Video and Image Processing,
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Fig. 11.2 Three different gray-level mappings

Fig. 11.3 Inverting an image

Fig. 11.4 Solarize filter

11.1.1 Point Processing

The simplest way to create visual effects is to play around with the gray-level map-
ping. Two classic gray-level mappings are illustrated in Fig. 11.2 and the visual
effects of these mappings are illustrated in Figs. 11.3 and 11.4.
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Fig. 11.5 Rank filters

Fig. 11.6 Using object motion to create visual effects

11.1.2 Neighborhood Processing

The different neighborhood processing methods can sometimes also result in nice
visual effects. In Fig. 11.5 the effects of the two first rank filters listed in Sect. 5.1.1
are shown.

11.1.3 Motion

The image differencing method described in Sect. 8.4 is a simple yet efficient way
of creating visual effects in video. The ghost objects illustrated in Fig. 8.6 are in
general unwanted in video processing, but when it comes to creating an interesting
visual effect they can be quite interesting. Furthermore, if the difference image is
not thresholded, the “ghosty” appearance is even more profound.
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Fig. 11.7 Reducing the number of colors in the output

In Fig. 11.6 two examples are shown. The left image is a result of subtracting the
current image from a previous image (and taking the absolute value) in a sequence
where a person moves his head from one side to the other. In the right image the
difference image is used as the blue channel in an RGB image where the red and
green channels are set to zero. The sequence used to generate the difference image
contains the head of a person moving upwards.

11.1.4 Reduced Colors

Changing the colors in an image is an easy way to create a visual effect. Examples
were shown above in Sect. 11.1.1. Another way is simply to reduce the number of
colors applied in the image. This is illustrated in Figs. 11.7(a) and 11.7(b) where
only eight and two different colors are used, respectively. To spice it up a bit the
effects can be even more profound by enhancing the main edges. This can be done
by first making a gray-scale copy of the input and then do an edge detection. Small
edges (BLOBs) are removed and the remaining edges dilated and superimposed on
the output. The effect is that the output appears a bit as a cartoon drawing. Examples
are illustrated in Figs. 11.7(c) and 11.7(d).
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Fig. 11.8 Random inversions

11.1.5 Randomness

It can often be interesting to add some randomness in order to create a visual effect.
This can be done in many different ways and only the imagination of the designer
sets the limit. The output will be different from time to time even though the input
in the same. This adds a nice uniqueness to visual effects involving randomness.
Below we describe one concrete example, namely an algorithm denoted random
inversions.

The algorithm is based on the idea of generating a random binary pattern and
then using this to apply image inversion locally. First the output image is divided
into squares of equal size S ×S. For each square we draw a random number between
zero and one. If this number is above 0.5 then the square is set to white; otherwise
to black. This will result in an intermediate output like the one in Fig. 11.8(a). In the
next step the intermediate output in blurred by a mean filter in order to obtain softer
shapes, see Fig. 11.8(b). The kernel size is equal to S/2. The blurred squares are
now thresholded, using a threshold value of 128, to ensure the edges of the shapes
are sharp, see Fig. 11.8(c). For each white pixel we now invert the corresponding
RGB pixel in the input and place that in the output. For each black pixel we simply
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Fig. 11.9 Representation of
a point (Px,Py) using polar
coordinates (θ, r)

copy the corresponding input pixel to the output. In Figs. 11.8(d) and 11.8(e) the
effect of the algorithm is illustrated.

11.2 Visual Effects Based on Geometric Transformations

One could argue that the geometric transformations presented in Chap. 10 all cre-
ate visual effects. They are, however, not characterized as such, but rather as image
manipulation. Other geometric transformations exist that are aimed at creating vi-
sual effects. These transformations can be compared to the magic mirrors found in
entertainment parks, where for example the head of the person facing the mirror is
enlarged in a strange way while the legs are made smaller. Such transformations
are said to be non-linear as opposed to the transformations in Chap. 10, which are
linear. What is meant is that transformations which can be written as a product
between a vector and a matrix (for example as in Eq. 10.9) are said to be linear.
Transformations involving, for example, trigonometric operations, square roots, etc.
are said to be non-linear. Below four such transformations are presented followed
by a so-called local transformation.

11.2.1 Polar Transformation

A point P in 2D can be represented as (Px,Py) see Fig. 11.9. But we can also
represent it by an angle θ and length r , see Fig. 11.9. From the law of right-angled
triangles, see Sect. B.8, we can write

Px = r · cos(θ) (11.1)

Py = r · sin(θ) (11.2)

This is denoted a polar transformation. When using this to create a visual effect,
we use the image coordinates (x, y) as θ and r , respectively. That is, the forward
mapping is given as

x′ = y · cos(x) (11.3)

y′ = y · sin(x) (11.4)
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As discussed in Sect. 10.2 the forward mapping needs to be replaced by the
backward mapping. For the polar transformation, this can be found in the following
way:

y ′

x′ = y · sin(x)

y · cos(x)
= sin(x)

cos(x)
= tan(x) ⇒

x = arctan

(
y ′

x ′

)
(11.5)

x′2 + y′2 = y2 · cos(x)2 + y2 · sin(x)2 = y2 · (cos(x)2 + sin(x)2) = y2 ⇒
y =

√
x ′2 + y ′2 (11.6)

To implement this a few things need to be done. First of all the angle, θ , needs to
be scaled so that its maximum value is 360. This is done by replacing x by

x · 360

width
(11.7)

where width is the width of the input image. The height and width of the output
image will be two times the radius, i.e. two times the height of the input image.
Normally the size of the output image is therefore scaled by replacing y by y/2.
This will result in an output image where the height and width are equal to the
height of the input image.

The function arctan() behaves differently depending on the quadrant wherein it
is applied. This needs to be handled when implementing the function, but many
software libraries luckily have a built-in function that handles that, for example
ATAN2() in the C language.

The origin of the polar transform, (0,0), is located in the center of the output
image which is (height/2,height/2). When going through the output image (using
two for loops) we therefore need to subtract height/2 from both x ′ and y′. Lastly, we
need to ensure that only valid values are processed. The invalid values can be seen
as the four white regions in the corners in Fig. 11.10. We do this by only processing
pixels (x ′, y ′) those distance to the center of the image is equal to or below the
maximum radius height/2.

Combining all of the above we can rewrite Eqs. 11.5 and 11.6 as

x = width

360
· arctan

(
�y

�x

)
(11.8)

y = 2 · r (11.9)

where �x = x′ − xc, �y = y′ − yc, xc = height/2 and yc = height/2 are the center
of the input image, and r = √

�x2 + �y2 is the radius. These equations only hold
when

r ≤ rmax (11.10)
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Fig. 11.10 (a) A polar transformed image. (b) A polar transformed image with the y-axis pointing
upwards

where rmax is half the height of the output image. When r > rmax we simply say
g(x′, y′) = 255. In Fig. 11.10 two polar images are illustrated. The first is calcu-
lated as described above. For the other one the y-axis (the radius) is pointing up as
opposed to down.

11.2.2 Twirl Transformation

Geometric transformations can easily become so complicated that the backward
mapping is very hard or even impossible to derive. Such transformations are there-
fore often defined directly in the output domain, meaning that the forward mapping
is not defined but only the backward mapping. The next three transformations are
of this type. The first is the twirl transformation, which is inspired by the polar
transformation, see Eqs. 11.1 and 11.2. The rotation angle θ is now defined as

θ = arctan

(
�y

�x

)
+ φ ·

(
rmax − r

rmax

)
(11.11)

where φ is the rotation baseline and the other parameters are defined as for the polar
transformation. The effect of the transformation is that the center remains at the
same position and the rest of the pixels are rotated around the center with a rotation
angle that is maximum (φ degrees) near the center and becomes smaller the closer
to the image corners a pixel is. The final backward mapping is defined as

x = xc + r · cos(θ) (11.12)

y = yc + r · sin(θ) (11.13)
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Fig. 11.11 The twirl transformation

So, for each pixel (x′, y ′) in the output image, we calculate a pixel position in the
input image (x, y) using Eqs. 11.12 and 11.13. If the calculated pixel position is not
within the input image, we set (x′, y′) to black. In Fig. 11.11 the twirl transformation
is illustrated.

11.2.3 Spherical Transformation

This transform zooms in on the center of the image. The size of the zoomed area is
defined by S. The actual zoom effect is similar to how a lens would bend the light.
This is normally referred to as the refractive index, n. The backward mapping is
defined as

x = x′ − t · tan(αx) (11.14)

y = y′ − t · tan(αy) (11.15)

where t = √
S2 − r2 and

αx =
(

1 − 1

n

)
· sin−1

(
�x√

�x2 + t2

)
,

αy =
(

1 − 1

n

)
· sin−1

(
�x√

�y2 + t2

) (11.16)

where S and n are defined by the user, and �x and �y are defined as above. Equa-
tions 11.14 and 11.15 are only defined for r < S. When this is not the case the
transformation is reduced to x = x′ and y = y′. As for the transformation above,
we will insert a black pixel if the transformation results in a pixel outside the input
image. In Fig. 11.12 the spherical transformation is illustrated.
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Fig. 11.12 The spherical transformation

Fig. 11.13 The ripple transformation

11.2.4 Ripple Transformation

Another interesting non-linear geometric mapping is the ripple transformation. It
distorts the image locally using a sinus function. The effect is that an overall wave
pattern is introduced to the image. The backward mapping for the ripple transfor-
mation is defined as

x = x ′ + ax · sin

(
y ′ · 2π

ωx

)
(11.17)

y = y′ + ay · sin

(
x ′ · 2π

ωy

)
(11.18)

where ax and ay are the amplitudes of the wave pattern in the x- and y-directions,
respectively and ωx and ωy control the frequencies of the waves in the x- and y-
directions, respectively. In Fig. 11.13 the ripple transformation is illustrated.
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Fig. 11.14 A local geometric transformation based on rotation

11.2.5 Local Transformation

In the four geometric transformations above, all pixels go through the same mapping
process and we can therefore refer to such transformations as global. This need
not be the case and we can apply different transformations locally, hence a local
transformation. Obviously this can result in many different outputs by combining
the four transformations above plus those presented in Chap. 10. Here we provide
an example based on rotation.

First we copy the input image to the output image in order to avoid empty pixels
in the output. Next we divide the input image into a number of squares each having
the size S ×S. Each square in the input is now rotated and mapped to the output im-
age. The rotation angle is either θ degrees or −θ degrees, depending on its position
in the input. That is, the first square is rotated θ degrees. The second −θ degrees.
The third θ degrees and so on. The actual rotation is done using backward mapping.
The effect is shown in Fig. 11.14 for two different parameter settings.

11.3 Further Information

An alternative approach to perform a local geometric transformation is to use warp-
ing. If we recall the analogy to magic mirrors, warping corresponds to the glass of
the mirror being shaped differently depending on its position on the mirror. Com-
pared to the local approach described above, warping ensures that we do not have
abrupt changes in the output as seen in Fig. 11.14(b). In warping, the input image is
divided into a number of triangles, which are then each mapped by an affine trans-
formation, see Sect. 10.1, to the output image, see Fig. 11.15.

Another use of warping is found in morphing. Morphing is the process of map-
ping one image into another image. This is seen in for example TV commercials
where a wild animal is mapped into a beautiful woman. Morphing is based on know-
ing where a number of keypoints in one image should end up in the other image,
for example the position of eyes, ears and mouth. These points are used to calculate
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Fig. 11.15 An example of
warping, where an image is
divided into 32 triangles each
having its own affine
transformation

Fig. 11.16 Different visual effects

appropriate coefficients for the warping. Besides changing the shape of the image
using warping, morphing also interpolates the intensities of the two images using
alpha blending, see Sect. 4.6.

As mentioned above an endless number of different effects can be created based
on pixel manipulation and/or geometric transformations. In Fig. 11.16 the effects of
nine additional methods are illustrated.
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11.4 Exercises

Exercise 1: Explain the following concepts: pixel manipulation vs. geometric
transformation, warping, morphing.

Additional exercise 1: Design your own method/algorithm that creates a visual ef-
fect.

Additional exercise 2: How is arctan() defined?





12Application Example: Edutainment Game

It was late Friday night in a local bar downtown in IP-valley. Mick and SB were
hanging out and debating who had the most miserable life. At one point the bar-
tender interrupted them and basically told them to shut the fuck up or leave the bar.
“Too depressing,” he said.

Mick looked at him with a puzzled expression and wondered why the normally
gentle and polite bartender suddenly lost his temper. Later that evening when only
a few customers remained, the bartender again approached Mick and SB. Fearing
they might actually be kicked out of their favorite place, they quickly sobered up
and smiled innocently at the man.

“Sorry guys,” he started, while looking a bit pale. He opened three beers and
began to talk.

When Mick and SB were walking home that night they agreed to try and help the
frustrated bartender. He had explained how his only kid under-performed in school
and had a very hard time concentrating. The bartender had blamed all the hours his
kid spent playing computer games and he explained that he had tried everything,
but after his wife died the kid detached himself more and more from the rest of the
world, and the bartender couldn’t take his son’s one remaining pleasure from him.

“What can we do?” Mick asked SB.
“Oh come on man, that’s obvious,” SB replied, “we develop some kind of edu-

tainment game where the kid can learn something while playing.”
SB went on to explain his theory about the butterfly-effect of teaching, namely

that students need small islands of knowledge, which they are good at, in order to
learn new stuff.

“If you have solid steppingstones, you can do anything,” SB concluded.
Mick was about to argue and ask what that had to do with butterflies, but since

he had no better idea (and he actually also had to admit that there was some logic in
the argument) he agreed to the overall idea and promised to come up with an idea
over the weekend.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7_12, © Springer-Verlag London Limited 2012
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Fig. 12.1 The overall concept of the edutainment game

12.1 The Concept

SB immediate liked the concept Mick had developed.1 It was simple and involved
a small game where you had to 1) move physically and 2) solve math exercises.
The idea was to use a projector to project math exercises on the floor. The correct
answer to the question together with some incorrect ones were also displayed on the
floor. To spice it up a bit, the possible answers were presented on the back of small
creatures and the kid now has to step on the correct creature before it crawls out of
the scene and a new question is asked.

Mick showed a block-diagram, see Fig. 12.1, to SB and explained the different
components of the system:
Game In this block, the math exercises are generated together with the possible an-
swers. The movements of the creatures are also controlled from this block. Lastly
it is decided whether the kid answers correctly by figuring out if one of his feet
touches the correct answer, an incorrect answer, or nothing.

Graphics This block generates the graphics.
Projector The physical projector, which projects the graphics.
Find feet This block takes input images from the camera and uses image processing

to find the position of the feet of the player.
Camera A camera filming the player.
“Damnation, you’ve been busy!” SB said, smiling at Mick.

“Well, that was the easy part, now comes the hard part,” SB replied seriously.

1Please note that the concept, ideas and images in this chapter are heavily inspired by [3]. The
interested reader can find additional information at the book’s web site.
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Fig. 12.2 The block-diagram of the image processing. The input is an image from the
camera—very noisy one might add. In the center of the image the lower part of a person is present).
The output is the position of each foot (indicated by the two ×)

They quickly agreed that the first three blocks where no problem and therefore
focused their energy on the image processing block: Find Feet.

“Hmmm, any ideas on how to. . .” SB began, before he was interrupted by a big
smile on Mick’s face.

“What!” SB started before he realized the answer himself and continued: “of
course, let’s look in the book”.

They ventured into Chap. 1 and soon found an overall structure for the image
processing. After studying the different book chapters they also managed to figure
out which algorithms to apply in the different sub-blocks, see Fig. 12.2. Below we
shall have a closer look at how SB and Mick pulled it off.

12.2 Setup

12.2.1 Infrared Lighting

SB and Mick quickly realized that such a simple thing—for humans—as to find the
feet of a person can be quite complicated for a computer. The simplest solution they
came up with was to ask the user to wear distinctly colored socks/shoes and then
do thresholding in some color space. However, for some reason Mick didn’t like
touching other people’s shoes (!) and therefore came up with an alternative solution.

He had earlier in his life been puzzled about the fact that his TV remote control
sends out light in order to control the TV and that he could not see the light. He
learned that, this was because the remote was sending out infrared light, which the
human eye cannot see, i.e., humans can only see light of certain wavelengths, see
Fig. 2.2. He then tried to see if different cameras could actually see this light and
learned that some can and some can’t—strange. He asked an expert who explained
that a camera is produced in order to capture the same as the human sees and hence a
filter is usually inserted into the camera that prevents the infrared light from entering
the sensing chip. In general, the better the filter the more expensive the camera. Mick
tried to take some cameras apart and actually found out that the filter is sometimes
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Fig. 12.3 Left: Standard camera. Center: Standard camera with the infrared filter removed. Right:
Standard camera where a visual-light filter has been inserted instead of the infrared filter

Fig. 12.4 Left: Image of a person’s lower body. Right: Same image captured by a camera with
a visual-light filter inserted and with infrared light sent out in a plane elevated a few centimeters
above the floor

a physical piece of material that can be removed and more interesting a new filter
can be inserted. He showed SB Fig. 12.3 to illustrate his point.

The three images are of a scene containing a battery casing to the right, a circuit-
board with an infrared light to the left, and some wires in the middle. The left figure
is captured with a standard camera, where the infrared light is slightly visible. In
the center image the infrared filter has been removed, meaning that there is nothing
to block the infrared light. Finally the image to the right shows the situation when
a visual-light filter is inserted into the camera, meaning that only infrared light is
being captured by the camera.

“Impressive!” SB exclaimed, “so you want to place these infrared light sources
on the feet of the person?”

“No, that would be similar to asking the users to wears colored socks/shoes.”
“Oh, but what then?” SB asked, a bit puzzled.
“The infrared light source can be forced to send light out only in a plane. We do

this and then place a couple of them on the floor. In this way infrared lighting is
only present in a plane a few centimeters above the floor and this is where the feet
are, when they are touching the floor. In the Fig. 12.4 you can see an image with
ordinary lighting and one with my suggestion. Of course this means that no other
objects can be placed on the floor inside the area where the game is played. But I
think that’s a reasonable assumption.”
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Fig. 12.5 The camera image
containing the graphics
projected on to the floor. The
two coordinate systems have
been added to underline the
misalignment of the
coordinate system of the
camera and the coordinate
system of the graphics. Note
the four light sources placed
on the floor at the corners of
the graphics

SB stared at Mick while his jaw started to drop and said: “I’m not worthy. That
is fucking brilliant, man.”

“I know,” Mick said, smiling.

12.2.2 Calibration

“How will the Game-block know if the player steps on the right answer?” Mick
asked.

After a moment of silence they looked at each other and realized that a calibration
was needed. They both knew the basics about calibration, but calibration involves
math, which neither of them was particular fond of.

What they had realized was that the coordinate system of the projector and the
coordinate system of the camera were different. To better understand the problem
they created Fig. 12.5. This figure shows what the camera sees, i.e., the coordi-
nate system of the image from the camera is a standard orthogonal one: (x, y). The
graphics projected by the projector is of course also represented in a standard coor-
dinate system denoted (x ′, y ′). But since the projector is tilted and rolled a bit with
respect to the floor, graphics projected on the floor is a bit “off” in the sense that the
opposite sides are not of equal length. Moreover, the camera is also tilted and rolled
with respect to the floor adding to the “off-ness” of the graphics when captured by
the camera. To sum up, the two different coordinate systems are not aligned. But
why is this a problem?

Imagine the player is standing on the correct answer. The Game-block might
have told the graphics to place that answer at (x′, y ′) = (100,200). The Find Feet-
block now takes an image and (correctly) locates the position of the foot as (x, y) =
(307,298). How can the Game-block now compare (x ′, y ′) and (x, y) and figure
out if the player is standing on the correct answer? It cannot. It simply does not
know how to map from one coordinate system to the other. So what a calibration
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Fig. 12.6 The effect of applying different threshold values

does is to find a mapping between two different coordinate systems—here between
(x, y) and (x′, y ′). This mapping is known as a homography, see Sect. 10.3. Once
the calibration is done and the mapping function found, this function is then applied
to each found foot before the Game-block assesses whether the player steps on the
right answer or not. Assuming neither the camera nor the projector are moved, the
calibration only has to be done ones. Good practice is, however, to do a calibration
each time the system is started.

The solution to the calibration problem is given in Sect. 10.3. It requires knowl-
edge of the position of the same four points in the two camera systems. SB and
Mick found these four points by placing an infrared light source at each of the four
positions where the four corners of the graphics are projected onto the floor, see
Fig. 12.5. The positions of these four corners in the (x ′, y ′) coordinate system are
equal to the (known) size of the projected graphics: (0,0), (0, YMAX), (XMAX,0),
and (XMAX, YMAX). The corresponding (x, y) positions of these four corners are
found manually.

12.3 Segmentation

Mick and SB decided to apply a thresholding approach as the first step in segmenting
the feet from the rest of the image. Unfortunately, when they set up the system at the
bartender’s house it turned out that the infrared images where not always as nice as
those produced in Mick’s living room, see Fig. 12.4. In fact, the images were heavily
contaminated by noise, see Fig. 12.2, and choosing a suitable threshold value turned
out to be a delicate matter. On one hand, a low threshold value would segment the
feet but also produce a lot of noise. On the other hand, a high threshold value would
eliminate noise, but also parts of the feet. In the end, a moderate threshold value was
chosen, see Fig. 12.6. They tried to eliminate the remaining noise by morphology
and/or a median filter, while at the same time thinking about the framerate. None
could do a perfect job and the conclusion was a 7 × 7 median filter and then remove
the final groups of noise pixels in the Representation sub-block, see Fig. 12.2. In
Fig. 12.7 the effect of different median filters is illustrated.
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Fig. 12.7 The effect of applying different sized median filters

12.4 Representation

When SB and Mick finally arrived at this sub-block they were pretty content with
themselves. They knew that once the input image could be converted into a binary
image where the objects of interest were isolated from all other objects, then the
goal was close. First, of course, they had to combine the object pixels (the white
pixels) into the groups of connected object pixels—the labeling process.

“Mick, I can’t find anything about labeling in the book.”
“It’s called BLOB extraction in there,” Mick replied while gesturing at the book.
“Of course it is”, SB said in an ironic tone. He found the section and started to

read. “Should we use 4-connectivity or 8-connectivity?”
“After we have median filtered the binary image, the objects are quite smooth.”
“Meaning?”
“Meaning that the connectivity will not make a big difference, hence use 4-

connected.”
“Ehh, why?”
“It’s faster, and as I just said, it won’t make a big difference.”
“I see.” SB quickly implemented the BLOB extraction algorithm and now had

a number of labeled BLOBs. Two things now remained, finding the BLOBs repre-
senting the feet and finding the center point of each foot. To this end some features
needed to be extracted from each BLOB.

While filtering the noise they had realized that the size of a BLOB is an excellent
feature when classifying BLOBs as feet or noise. So they ignored BLOBs that were
too small and too big, and now only the feet remained. In the book, Eq. 7.2 showed
how to calculate the center of the BLOB (foot). When SB saw the equations, how-
ever, he became pale. He hated when an equation contained a Greek letter. “Why
can’t they just use ordinary letters?”, he was asking himself, when he suddenly got
an idea (anything to avoid using Greek letters).

“Mick, the position of the feet, is that critical?”
“What do you mean?”
“Does it matter if it’s a few pixels off?”
“No, not really.”
“Then why don’t we use the center of the bounding box instead of the center of

mass?”
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Mick thought about it for a moment before replying: “Good idea and it is actually
also less computationally demanding.”

30 minutes later. “Done, the code is done,” SB said proudly.
“Excellent, I have just arranged for a meeting with the bartender tomorrow night.”

12.5 Postscript

The bartender loved the game developed by SB and Mick, and actually had great
fun playing it himself. His son, however, tried it twice and then announced that it
was stupid and left.

Some months later the bartender, now in a much better mood, had his son with
him in the bar (on a Friday night!). He gently pushed the kid toward SB and Mick,
who was a bit surprised to see him.

“So you like the game?” Mick tried.
“No”, he said and a awkward silence occurred. The bartender then stepped for-

ward and explained that his son one day had asked him how the game had known
where his feet were. The bartender had then repeated some of the stuff Mick and SB
explained to him when he asked them a similar question, namely that it was soft-
ware that analyzed the images from the camera. He had continued explaining that
the software was based on math. His son had looked at him with big eyes and said:
“So you are saying that math can actually be used for something in the real world?”

The following day the kid had approached his (very surprised) math teacher and
asked if he knew some of the math that was used in software. The teacher (after
recovering) had asked why, heard the story and smiling told the kid that all aspects of
math are applied in software nowadays. To follow it up, the teacher created a mini-
project for his class where aspects of how math are used in software was the topic.
The students (including the bartender’s son) loved it and several “lost” students
(including the bartender’s son) picked up a new interest in math. “And this in turn,”
the bartender continued, “has had a positive effect on my son’s attitude in school.”
Smiling he looked at his son and said: “well?”

The kid looked a bit shy when addressing Mick and SB: “Thanks.”
SB looked at Mick with his killer smile and said while blinking: “I rest my case.”
“What?”
“The butterfly effect!”



13Application Example: Coin Sorting Using
a Robot

Mick and SB were talking quietly in their local bar when the bartender’s nephew,
Fred, approached them.

“I just inherited a robot,” he said out of the blue.
“Well, of course you have, terminator or R2D2?” Mick said while laughing.
“You inherited a what?” SB tried a bit more polite.
“A robot.”
“What do you mean a robot?”
“Well actually just a robot arm.”
“Ohh, just the arm,” Mick said ironically while laughing so hard the guests at the

nearby tables turned. He got up an went loudly to the restroom while saying I’ll be
back in his best Arnold impression.

“Well more like a controllable mechanical arm,” Fred continued undaunted. Still
not quite taking it in SB couldn’t help himself and asked who was wearing it before
Fred got it.

“Very funny,” Fred said flatly. “My farther bought it at a foreclosure auction
some years back. He had this idea of using it to sort all the coins he inherited from
his brother. But he dies before finishing the job.” SB didn’t know what to say, but
after a few moments the silence was broken when Mick returned from the restroom.

“I bet you’ll be good at arm wrestling if you put it on.”
“Seriously, I want to complete what my farther set out to do.”
“Ok, how far did he get.”
“Well, he moved it into his garage five years ago and that’s about it.”
“Oh. But why didn’t he just sort the coins by hand?”
“Too many.”
“How about those machines at the bank?” “Only works on newer coins and be-

sides, that would be cheating. I spent last month moving it to my basement and
getting it up and running. Now I can control it from a remote program and it can
pick up objects on the table—if I know exactly where they are located.”

“Really! Why don’t you bring it here so it can grab another beer for me?” Mick
said. SB gave him a look and he continued. “Ok, sorry, so when will you be done,
I’ll like to see a robot sorting coins.”

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
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Fig. 13.1 An illustration of the concept. The dashed lines indicate that the computer can control
the table, the box, the robot, and receive data from the camera. Note that the small boxes are not
shown in the side view to simplify the visualization

“Well that’s the thing, I need a way of informing the robot exactly where the
coins are located and their type.”

“Ahh, you need to do image processing, good, very good my young apprentice,”
Mick said smiling.

“True, but I don’t know anything about it, so I though you might help me. My
uncle suggested asking you since you did such a good job some years back with
that math game. And he even said he would give you a discount on your bills if you
helped.”

The week after they all met at Fred’s house to see the robot and know a bit more
about the coins and concept.

13.1 The Concept

Mick and SB were very impressed by the setup in Fred’s basement. They had ob-
viously seen robots before on TV, but never met one in person, so to speak. While
Fred showed them around he explained the concept of his automatic coin sorting
system. Mick made two drawings so he would be able to remember when they got
back home, see Fig. 13.1.

The concept was the following. The robot, or rather the robot arm, was equipped
with a “hand” allowing it to pick up objects located on the table in front of it. It
was no ordinary table, but a so-called vibrating table that was controlled from the
computer. At first Mick and SB were puzzled by the purpose of a vibrating table,
but later they realized that it played a central role in the setup.

“Look at that box up there”, said Fred. “That is where I place the coins. The
computer can then control the small opening in the bottom of the box and thereby
release coins onto the table. The box can hold around 2000 coins at a time and with
my 50,000 coins I just need to fill it up 25 times. When the coins are dropped onto
the table they often end on top of each other. This is problematic when the robot
tries to pick them up because it assumes the coins are located exactly on the table
and not some mm above. The computer therefore commands the table to vibrate,
which ensured the coins don’t overlap.”
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Fig. 13.2 The six different
types of coins

“How does the robot know where a coin is?” Mick asked. Both Fred and SB
looked at him with surprise until he realized why. “Ahh, through image processing,
got it,” he said smiling.

“What are those small boxes for?” SB asked.
“That is where the robot places the sorted coins. Type one goes into the first box,

type two into the second and so on. I have six different types of coins (see Fig. 13.2)
and hence 6 small boxes.”

“So the concept is the following,” SB recapitulated, “you have a program running
that can tell the box to release a portion of coins onto the table. The table then
vibrates in order to avoid coins laying on top of each other. The camera then captures
an image of the table and finds the coins and determines their type. The type and
position of each coin is then send to the computer that controls the robot to pick
up the coins one at a time and place them in the small boxes. When the image
processing cannot find any more coins a new portion of coins is released onto the
table. This is repeated until no more coins remain in the box. The robot, the vibrating
table and the box are already operational and you want us to make some image
processing finding the type and position of the coins, correct?”

“Yes, can you do it?”
“Of course” Mick and SB said at the same time. SB continued cocky, “after the

success we had with the system we built for your uncle this should be a-walk-in-
the-park.”

“Careful now,” Mick warned, “this is a different problem.”
“But we still have the book,” SB replied smiling. They revisited the old system

they built for the bartender to find inspiration. After a few initial tests they decided
on the block diagram in Fig. 13.3.
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Fig. 13.3 The block diagram of the image processing part of the system. The output for each coin
is its type and center

Fig. 13.4 The field-of-view
of the camera and how it
relates to the setup

13.2 Image Acquisition

Fred had a cousin selling electronics online and Fred had convinced the cousin to
give him a good deal on a camera. He sent the link to the different cameras to Mick
and SB, and asked them to pick one. Fred had already decided that the camera
should be located 0.5 meter above the center of the vibrating table, which had the
dimensions 0.5 m × 0.5 m. The only requirement for the camera was that it should
be able to see the entire table. SB therefore made a drawing to figure out what the
field-of-view (FOV) of the camera should be, see Fig. 13.4(a). When SB had been
staring at it for 15 min he asked Mick if he had any ideas.

“You did not pay much attention in math classes did you?”
“Will you help me or not?” SB said irritated.”
“No, but I’ll give you a hint,” Mick said and drew a vertical line. “Look at that

triangle (see Fig. 13.4(b)) and then multiply the solution by two.” SB slapped his
own face while wondering where his mind had been in all those math classes back
in high school. He soon wrote the following equation and found out that they should
get a camera with a FOV of at least 53.1°.

FOV = 2 · α = 2 · tan−1
(

Y/2

X

)
= 2 · tan−1

(
0.5 m/2

0.5 m

)
= 53.1° (13.1)

where Y is the width of the table and X is the distance between the camera and
table.
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Fig. 13.5 Converting the RGB image to a gray-scale image

Fred had calibrated the robot to the table, so that the robot could pick up coins
if their position on the table were provided. The position of the coins found by
the image processing software therefore needed to be mapped into the coordinate
system of the table, i.e. the robot. From the system they developed for the bartender
they knew the solution was to find four corresponding points in the two coordinate
systems and then find the mapping using the theory of homography. To increase the
precision of the mapping they decided to use 16 points instead of four. They placed
16 coins on the table in a regular grid spanning the entire table. They first measured
the position of each coin with respect to the origin of the table (defined to be the
lower left corner) and then measured their positions in the image. They now had 16
corresponding points, which they loaded into a program they found on the web and
hocus-pocus, out came the coefficients of Eq. 10.12. They put the coefficients into
Eqs. 10.13 and 10.14 and they could now map from the image coordinates to the
coordinates of the robot. Now they just needed to find the coins and their type.

13.3 Preprocessing

The first idea that came to mind when they discussed how to distinguish the different
types of coins from each other was to use the color of the coins. Fred, however,
quickly undermined that idea by showing them how the color of a coin can change
after being exposed to different circumstances such as extensive sunlight or acid.
Having accepted that they decided to convert the input RGB image to a gray-scale
image in order to reduce the amount of data. They played around with different
weighting schemes, see Eq. 3.3, but in the end it turned out that simply using the
red part of the image, that is WR = 1 and WG = WB = 0, gave the best result.
They argued among themselves that the reason was that the coins contains more red
material.1 In Fig. 13.5 the conversion is illustrated.

1The explanation could of course also be that the lighting in the scene is more reddish, but they
never investigated that.
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13.4 Segmentation

Mick and SB realized after some struggle that a standard thresholding approach with
a fixed threshold value would not suffice. Primarily because the system should run
for a long period of time where the lighting in the basement changed significantly
due to the many windows and Fred’s unwillingness to cover these windows. After
reading about thresholding in the book they looked at each other.

“It seems we need automated thresholding, right?” asked Mick.
“Agreed, but which one of the two methods mentioned, the global or the local?”

After a short break SB continued, “well, we known that the lighting on the table
can differ from position to position, which suggests applying the local threshold-
ing method. But we also know that the overall lightning in the room may change,
which suggests using automatic thresholding.” They played around with the two
methods and finally arrived at the conclusion that they needed both. First they used
the subtracting approach from the local method to remove the effect of the uneven
illumination within the image and then they applied the global method to the result-
ing image. It worked very robustly independent on how the lightning changed, but
was not perfect. Some small holes appeared inside the coins due to strong refections
of the light from the metal surfaces. They applied a morphologic closing operation
to remove these holes. The different steps Mick and SB went through can be seen in
Fig. 13.6.

13.5 Representation and Classification

With good binarized images, SB and Mick now turned to the problem of defining
features that would allow for a classification of the different types of coins. First,
of course, they had to locate the different BLOBs in the image. For this purpose
they reused their BLOB extracting algorithm from their previous system. Next they
removed all small BLOBs, like those in the corners of Fig. 13.6(f), by introducing a
minimum threshold value on the BLOB size.

“Mick?” SB called, “have you noticed that the coins sometimes touch each and
hence two BLOBs are merged into one?”

“Yes. We need to calculate the circularity and ignore all BLOBs with a circularity
far from one. Could you look into that?” SB agreed and found the equation for
circularity (Eq. 7.5). It contained both the area and perimeter. SB didn’t know how to
calculate those features for a BLOB with holes inside and therefore first performed
a closing with a big kernel to remove the hole. That did the trick. Armed with the
circularity he could easily detect merged BLOBs and ignore them based on their
circularity values. He proudly showed the result to Mick who liked his solution.
Mick had in the meanwhile been investigating which features that could separate
the different types of coins. He knew that different lighting situations and different
placements of a coin would result in slightly different feature values. So in order
to understand the effect of these factors he placed ten different coins of each type
different places in the scene (under different lighting conditions) and measured their
feature values, see Fig. 13.7.
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Fig. 13.6 The different segmentation steps. (a) The input image. (b) The input thresholded using
the global method. (c) The mean of the input image calculated with a 200 × 200 kernel. (d) The
result of subtracting the mean from the input. (e) Image (d) thresholded using the global method.
(f) The effect of applying morphologic closing with a kernel of 7 × 7 to the binary image in (e)

“I started out using just the size, but that was not enough and I therefore ended
up also using the number of holes in the BLOB.”

“But how will you figure out if a BLOB contains a hole or not?”
“I’ll find the center of the BLOB and see if that pixel is black or white,” Mick

said glooming.
“But what if the center pixel is black due to noise that is not removed in the

segmentation process?” Mick felt quiet. “Argh, didn’t think about that”. Silence.
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Fig. 13.7 The feature space
and the distribution of the 60
coins used for training

“I have an idea,” SB said, “if the center pixel is white we don’t have a hole. If
the center pixel is black we start a connected component analysis in this pixel where
object pixels are black. If the BLOB found in this way has a size corresponding to
the size of a hole and. . .”. SB stopped when he noticed Mick wasn’t paying attention
anymore.

“What?”
“How can a hole have a size?” Mick said with a wolfish smile.
“Idiot,” SB said and continued, “if the size of the BLOB is acceptable we have

found a hole.”
“But a hole is something that is not there, so how can you then find it?” laughed

Mick, while SB left the room to get some air. When he returned they finished im-
plementing the hole detection algorithm. Next they looked at the feature space, see
Fig. 13.7.

“Why can a certain type of coin have different sizes from image to image? I mean,
a certain type of coin has a fixed size” SB wondered aloud.

“First of all, the further away from the camera a coin is the smaller it will look.”
“Really?” SB asked doubtfully.
“Yes. Imagine a coin 10 m away, then it would be very small in the image.”
“Ahh, I get it, that is due to the perspective geometry of the camera.” Mick looked

really impressed at SB while wondering where he picked up such a fancy term.
“Second, and more importantly,” Mick continued, “due to changes in the light-

ing and the different surfaces of different coins, the segmentation will not perform
equally well on different coins and hence the area of even the same type of coins
will change. But if you look at the feature space and focus on the coins with a hole,
you can see that there is a relatively large difference between the sizes of the differ-
ent types. From this follows that we can simply classify the coins without a hole by
a few if-then-else statements. You can see the same is true for the coins with a hole.
This classification strategy gives us the type of a particular BLOB. The center of a
coin we can find using Eq. 7.2. And no, we can’t use one of the approximations of
the center like last time, since we need as precise a center as possible.”

They implemented this and the resulting information sent to the robot was as in
Table 13.1.

The last step was to test their algorithm and they therefore captured a number of
images in different lighting conditions and with different coins located at different
locations. They found that sometimes the lighting resulted in poor segmentation
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Table 13.1 An example of the information sent to the robot after an image has been processed.
Xc and Yc are the x and y positions of the center of the BLOB

Type D B D D F C · · ·
Xc 780 1099 599 1363 1186 843 · · ·
Yc 277 277 364 427 423 434 · · ·

of particular coins in particular locations. The consequence was that such coins
could not be accepted as coins since their circularity would be too far from one. It
happened rarely, so they didn’t care too much about this problem. Besides, the next
time the table was vibrated the problematic coins would change position and hence
the problem disappeared. Happy with their image processing algorithm they handed
over the code to Fred who then merged it with his own system for controlling the
robot. The day after he started the system.

13.6 Postscript

Some months later Mick and SB ran into Fred in the local bookstore.
“Hey guys, been meaning to talk to you for some time, but been so busy.”
“No problem, how did it go with the robot?” SB asked.
“She works like a charm. I filled up the box each morning and when I returned

from work all the coins from the box were placed in the respective small boxes
according to their type. So after a month or so all the coins were sorted.”

“So you packed the robot away then?” Mick asked.
“Well, when I turned her off I kind of got the feeling I have killed her,” Fred said

with a weird voice, “so I turned her on again. . . ”. SB and Mick looked at each other.
“Do you also talk to it?” Mick asked smiling.
“Well, no, of course not,” Fred said in a nervous voice, “I just go sit in the base-

ment at nights so she is not getting lonely, but never mind, now I have found a new
job for her. I have bought ten big boxes of old stamps and I want her to sort them.
Do you have plans for the weekend?”





ABits, Bytes and Binary Numbers

When working with images it is useful to know something about how data are stored
in the memory of the computer. Most values associated with images are closely
related to the internal representation of the numbers. The value of one pixel is often
stored as one byte for example.

The memory of the computer can basically be seen as an enormous amount of
switches that can either be turned on or off. Each switch is called a bit (binary digit)
and can therefore be assigned either the value 0 or the value 1. So if you just wanted
to store values of either 0 or 1 it would be perfectly fine. However, this is rarely the
case and bits are combined to represent other types of number.

The binary number system is also called a base-2 system, since the basic unit only
has two values. Our normal system is a base-10 system and is called the decimal
system. To understand the base-2 system better, let us first have a look at the base-
10 system. When you see the following two numbers, 137 and 209814, you should
actually think like this in terms of the base-10 system:

1 · 102 + 3 · 101 + 7 · 100 = 100 + 30 + 7 = 137 (A.1)

2 · 105 + 0 · 104 + 9 · 103 + 8 · 102 + 1 · 101 + 4 · 100

= 200000 + 0 + 9000 + 800 + 10 + 4 = 209814 (A.2)

To generalize the formula we have

· · ·xn · 10n + xn−1 · 10n−1 + · · · + x2 · 102 + x1 · 101 + x0 · 100 (A.3)

The x values are the coefficients of the base-10 system and they define the fi-
nal decimal number. This formula is similar no matter what base you use. Below
the general formulas for calculating a decimal number for base-16 (hexadecimal
numbers) and base-2 (binary numbers) can be seen:

Base-16: · · ·xn · 16n + xn−1 · 16n−1 + · · · + x2 · 162 + x1 · 161 + x0 · 160

(A.4)

Base-2: · · ·xn · 2n + xn−1 · 2n−1 + · · · + x2 · 22 + x1 · 21 + x0 · 20 (A.5)
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The number of different values the coefficient can take is equal to the base, hence
for base-10, ten different values are possible (0,1,2,3,4,5,6,7,8,9) and for base-
2, two values are possible (0,1).

Eight bits together is called a byte. A byte is shown as a row of eight bits (having
values 0 or 1). The bit to the left is called the most-significant bit (MSB) and the bit
to the right the least-significant bit (LSB). Converting a byte into a decimal number
is done by inserting the coefficients into the following equation (the eight right-most
terms of Eq. A.5):

Decimal number

= x7 · 27 + x6 · 26 + x5 · 25 + x4 · 24 + x3 · 23 + x2 · 22 + x1 · 21 + x0 · 20 ⇒
Decimal number

= x7 · 128 + x6 · 64 + x5 · 32 + x4 · 16 + x3 · 8 + x2 · 4 + x1 · 2 + x0

Some example byte values:

Binary Decimal

00000000 0
00000001 1
00000010 2
00000100 4
00000101 5
00001111 15
00010101 21
01010101 85
10000000 128
11111111 255

As can be seen a byte is defined to have values from 0 to 255 (256 values in total).
Sometimes bytes are also appended to create numbers larger than 255. A common
example is two bytes together that spans the values 0−65535 (216 = 65536 in total).

A.1 Conversion from Decimal to Binary

A simple routine exists for getting the binary representation of a decimal number.
Initially, the largest power of two that is less than the decimal number is found. If the
decimal number is 137, the largest power of two is 128 (27). This is then subtracted
from the original number and the corresponding bit is set. This is repeated until the
decimal number is reduced to zero. In our example, 137 is found to be a sum of
128, 8, and 1 and therefore the binary representation of 137 is 10001001. Another
example:
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Decimal Max power of two Binary Resulting binary number

85 64 (26) 01000000 01000000

21 (85–64) 16 (24) 00010000 01010000

5 (21–16) 4 (22) 00000100 01010100

1 (5–4) 1 (20) 00000001 01010101





BMathematical Definitions

This appendix provides some basic mathematical definitions. The appendix is in-
tended for readers who do not have a mathematical background or readers who
need a “brush-up”.

B.1 Absolute Value

The absolute value of a number, z, is written as Abs(z) or |z|. It is calculated by
deleting the “minus” in front of the number. This means that |−150| = 150. Mathe-
matically the absolute value of a number, z, is calculated as

|z| =
√

z2 (B.1)

In terms of programming it can be written as

i f ( z < 0)
z = −1 ∗ z ;

B.2 min and max

The min value of a set of numbers is written as min{x1, x2, . . . , xn} and simply
means the smallest number in the set. For example, min{7,3,11,2,42} = 2. The
max value of a set of numbers is written as max{x1, x2, . . . , xn} and simply means
the biggest number in the set. For example, max{7,3,11,2,42} = 42. In terms of
programming the max operation can be written as follows, where we assume that N

numbers are present in the list and that they are stored in list[]:
MaxValue= l i s t [ 0 ] ;
f o r ( i = 1 ; i < N; i = i +1)
{

i f ( l i s t [ i ] > MaxValue )
MaxValue = l i s t [ i ] ;

}
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Table B.1 Different rational numbers and three different ways of converting to integers

x Floor of x Ceiling of x Round of x

3.14 3 4 3

0.7 0 1 1

4.5 4 5 5

−3.14 −4 −3 −3

−0.7 −1 0 −1

−4.5 −5 −4 −4

B.3 Converting a Rational Number to an Integer

Sometimes we want to convert a rational number into an integer. This can be done
in different ways, where the three most common are:
Floor simply rounds a rational number to the nearest smaller integer. For example:
Floor of 4.2 = 4. Mathematically it is denoted �4.2� = 4. In C-programming a
build-in function exists: floor().

Ceiling is the opposite of floor and rounds off to the nearest bigger integer. For
example: Ceiling of 4.2 = 5. Mathematically it is denoted �4.2� = 5. In C-
programming a build-in function exists: ceil().

Round finds the nearest integer, i.e., Round of 4.2 = 4 and Round of 4.7 = 5. In
terms of C-code the following expression is often used: int(x + 0.5). That is, we
add 0.5 to the number and then typecast it to an integer.

In Table B.1 some examples are provided.

B.4 Summation

Say you want to add the first 12 positive integers:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = 78 (B.2)

This is no problem writing down, but what if you want to add the first 1024
positive integers? This will be dreadful to write down. Luckily there exists a more
compact way of writing this using summation, which is denoted as

∑
. Adding the

first 1024 positive integers can now be written as

1024∑
i=1

i (B.3)

where i is the summation index. Below the summation sign we have i = 1, which
means that the first value of i is 1. Above the summation sign we have 1024. This
actually means i = 1042, but we virtually always skip i =. Either way, it means that
the last value of i is 1042. You can think of i as a counter going from 1 to 1042 in
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steps of one: 1,2,3,4,5, . . . ,1040,1041,1042. What comes after the summation is
a function, which is controlled by i and it is the values of this function (for each i)
that are added together. Below, some examples of different summations are given:

12∑
i=1

i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = 78 (B.4)

4∑
i=0

2 · i = 0 + 2 + 4 + 6 + 8 = 20 (B.5)

1∑
i=−2

i2 = 4 + 1 + 0 + 1 = 6 (B.6)

Say that you want to sum the pixel values of the first row in an image with width =
200. This is then written as

199∑
i=0

f (i,0) (B.7)

In general the summation is written as

m∑
i=n

h(i) (B.8)

In terms of C-programming the summation is implemented as a for-loop:

R e s u l t =0 ;
f o r ( i = n ; i < (m+ 1 ) ; i = i +1)
{

R e s u l t = R e s u l t + h ( i ) ;
}

We can also do a summation using more indices than i. For example, if we want to
add all pixel values in an image, then we need two indices representing rows and
columns. Concretely we would write

M−1∑
j=0

N−1∑
i=0

f (i, j) (B.9)

where N is the number of columns and M is the number of rows. In terms of C-
programming the double summation is implemented as two for-loops:
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Fig. B.1 (a) Point
representation. (b) Vector
representation

R e s u l t =0 ;
f o r ( j = 0 ; j < M; j = j +1)
{

f o r ( i = 0 ; i < N; i = i +1)
{

R e s u l t = R e s u l t + G e t P i x e l ( i n p u t , i , j ) ;
}

}

B.5 Vector

In the 2D coordinate system in Fig. B.1 a point is defined as P(x1, y1). The same
point can be represented as a vector:

−→p =
[
x1
y1

]
(B.10)

A vector is often written as a lowercase letter with an arrow above. It can be
interpreted as a line with a slope y1

x1
and a length. The length of the vector is defined

as ‖−→p ‖ =
√

x2
1 + y2

1 .
We can arrange the vector as a row (as opposed to a column) by taking the trans-

pose of the vector, −→p T . That is,

−→p T = [x1 y1] (B.11)

or in other words:

[
x1
y1

]T

= [x1 y1], [x1 y1]T =
[
x1
y1

]
(B.12)

Say we have two vectors: −→p1
T = [5 5] and −→p2

T = [2 0]. We can then calcu-
late the sum of −→p1 and −→p2 as
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Fig. B.2 (a) Adding two
vectors. (b) Subtracting two
vectors

Fig. B.3 The angle between
two vectors

−→p3 = −→p1 + −→p2 =
[

5
5

]
+

[
2
0

]
=

[
5 + 2
5 + 0

]
=

[
7
5

]
(B.13)

In the same way we can calculate the difference of −→p1 and −→p2 as

−→p4 = −→p1 − −→p2 =
[

5
5

]
−

[
2
0

]
=

[
5 − 2
5 − 0

]
=

[
3
5

]
(B.14)

These operations can also be interpreted geometrically as illustrated in Fig. B.2.
Two vectors cannot be multiplied but we can calculate the dot product between

them. Say we define −→p1 = [a b]T and −→p2 = [c d]T . The dot product between
them is then defined as

−→p1 • −→p2 = ac + bd (B.15)

The dot product can also be interpreted geometrically as

−→p1 • −→p2 = ‖−→p1‖ · ‖−→p2‖ · cosV (B.16)

where ‖−→p1‖ is the length of vector −→p1, ‖−→p2‖ is the length of vector −→p2, and V is the
angle between the vectors, see Fig. B.3. Note that it is always the smallest of the two
possible angles that is calculated using Eq. B.16, i.e., 0° ≤ V ≤ 180°. The biggest
angle is found as Vbig = 360° − V .

B.6 Matrix

When we have multiple vectors we can represent them as one entity denoted a ma-
trix. For example, −→p1 = [a b]T and −→p2 = [c d]T can be represented as
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P =
[
a c

b d

]
(B.17)

A matrix is often denoted by an uppercase letter in boldface, but other representa-
tions can also be used. To avoid confusion a textbook involving vectors and matrices
therefore often contains a preface stating how vectors and matrices are defined.

We say a matrix has a vertical and horizontal dimension, e.g., P has dimension
2 × 2. Note that the dimensions need not be equal. Similar to a vector a matrix can
also be transposed by making the columns into rows:

PT =
[
a b

c d

]
(B.18)

Matrices can be added and subtracted similar to vectors, but they need to have the
same dimensions:

[
a c

b d

]
+

[
e g

f h

]
=

[
a + e c + g

b + f d + h

]
(B.19)

[
a c

b d

]
−

[
e g

f h

]
=

[
a − e c − g

b − f d − h

]
(B.20)

Matrices can be multiplied in the following way:

[
a c

b d

]
·
[

e g

f h

]
=

[
ae + cf ag + ch

be + df bg + dh

]
(B.21)

The entry in row one and column one of the output matrix (ae + cf ) is found
as the dot product between row one of the left matrix and column one of the right
matrix. This principle is then repeated for each entry in the output matrix. This
implies that the number of columns in the left matrix has to be equal to the number
of rows in the right matrix. On the other hand this also implies that the number of
rows in the left matrix and the number of columns in the right matrix need not be
the same. For example, a matrix can be multiplied by a vector. The dimensions of
the output matrix are equal to the number of rows in the left matrix and the number
of columns in the right matrix. Below, some examples are shown:

A · B = C (B.22)

(3 × 2) · (2 × 7) = (3 × 7)

(12 × 3) · (3 × 1) = (12 × 1)

A matrix of particular interest is the identity matrix, which in the 2D case looks like
this:

I =
[

1 0
0 1

]
(B.23)
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If the product of two matrices equals the identity matrix, A · B = I, then we say
they are each other’s inverse. This is denoted as A−1 = B and B−1 = A, or in other
words A · A−1 = A−1 · A = I. For a 2 × 2 matrix the inverse is calculated as

[
a c

b d

]−1

= 1

ad − bc
·
[

d −c

−b a

]
(B.24)

Calculating the inverse for matrices of higher dimensions can be quite compli-
cated. For further information see a textbook on linear algebra.

B.7 Applying Linear Algebra

Say you want to find the equation of a straight line y = αx + β . You know that the
line passes through the point P1(x, y) = (2,3), so we have 3 = 2α + β . Obviously
this is not enough information to find α and β , or in other words we have one
equation and two unknowns α and β . So in order to solve the problem we need to
know the coordinates of one more point on the line or in other words we need two
equations to find two unknowns. Say that we then have another point on the line,
P2(x, y) = (1,1), yielding 1 = α + β , we can solve the problem in the following
manner. From the last equation we can see that α = 1 − β . If we insert this into the
first equation we get 3 = 2(1 − β) + β ⇔ β = −1 and from this follows that α = 2.
So the equation for the line is y = 2x −1. This principle can be used to solve simple
problems where we have a few equations and a few unknowns. But imagine we have
10 equations with 10 unknowns; that would require quite an effort (and most likely
we would make mistakes along the way). Instead we can use linear algebra and get
the computer to help us.

Using linear algebra to solve these kinds of problem is carried out by arranging
the equations into the form: −→a = B ·−→c , where −→a and B are known and −→c contains
the unknowns. The solution is then found by multiplying by the inverse of B:

−→a = B · −→c ⇔ (B.25)

B−1−→a = B−1B · −→c ⇔ (B.26)

B−1−→a = I · −→c ⇔ (B.27)

B−1−→a = −→c (B.28)

For the example with the two lines we have

3 = 2α + β

1 = α + β
⇒

[
3
1

]
=

[
2 1
1 1

]
·
[

α

β

]
(B.29)

−→a =
[

3
1

]
, B =

[
2 1
1 1

]
, −→c =

[
α

β

]
, B−1 =

[
1 −1

−1 2

]

Using Eq. B.28 we obtain the solution −→c = [2 −1]T .
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Fig. B.4 Right-angled
triangle

For this particular problem it might seem to be faster to do it by hand, as above,
instead of using Eq. B.28. This might also be true for such a simple problem, but
in general using Eq. B.28 is definitely more efficient. Recall that you just have to
define the matrix and vectors, then the computer solves them for you—independent
of the number of equations and unknowns.

When implementing linear algebra in software, it is highly recommended to ap-
ply a built-in library as opposed to implementing the solution from scratch. This
is especially true for linear systems with more than three dimensions, since these
require iterative solutions.

B.8 Right-Angled Triangle

In Fig. B.4 a right-angled triangle is shown. A right-angled triangle is defined as
θ1 = 90° and θ3 = 90° − θ2. The three points A, B and C define the corners of the
triangle. The relationship between the lengths of the three edges is defined using
Pythagoras’ theorem:

‖−→AB‖2 + ‖−→AC‖2 = ‖−→BC‖2 (B.30)

From trigonometry we have

sin(θ2) = ‖−→AC‖
‖−→BC‖ , cos(θ2) = ‖−→AB‖

‖−→BC‖ , tan(θ2) = ‖−→AC‖
‖−→AB‖ (B.31)

B.9 Similar Triangles

In Fig. B.5 two triangles are present. The outer triangle defined by the three points
ABC and the inner triangle defined by the three points DBE. If the two triangles
have the same angles, i.e., θ1 = θ4, θ3 = θ5, and θ2 = θ2, then the triangles are said
to be equiangular or similar.

If we look at the outer triangle then we know from trigonometry that

‖−→BC‖
sin(θ1)

= ‖−→CA‖
sin(θ2)

= ‖−→AB‖
sin(θ3)

(B.32)
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Fig. B.5 Two similar
triangles, i.e., triangles with
the same angles

For the inner triangle we have

‖−→BE‖
sin(θ4)

= ‖−→
ED‖

sin(θ2)
= ‖−→DB‖

sin(θ5)
(B.33)

Combining the two equations we get the following relationships between the two
triangles:

sin(θ1)

sin(θ2)
= sin(θ4)

sin(θ2)
= ‖−→BC‖

‖−→CA‖ = ‖−→BE‖
‖−→
ED‖ (B.34)

sin(θ1)

sin(θ3)
= sin(θ4)

sin(θ5)
= ‖−→BC‖

‖−→AB‖ = ‖−→BE‖
‖−→DB‖ (B.35)

sin(θ2)

sin(θ3)
= sin(θ2)

sin(θ5)
= ‖−→CA‖

‖−→AB‖ = ‖−→
ED‖

‖−→DB‖ (B.36)

‖−→BC‖
‖−→AB‖ = ‖−→BE‖

‖−→DB‖ ⇔ ‖−→DB‖
‖−→AB‖ = ‖−→BE‖

‖−→BC‖ (B.37)

‖−→DB‖
‖−→AB‖ = ‖−→BE‖

‖−→BC‖ ⇔ ‖−→DB‖
‖−→AD‖ + ‖−→DB‖ = ‖−→BE‖

‖−→BE‖ + ‖−→EC‖ ⇔

‖−→DB‖
‖−→AD‖ + 1 = 1 + ‖−→BE‖

‖−→EC‖ ⇔ ‖−→DB‖
‖−→AD‖ = ‖−→BE‖

‖−→EC‖ (B.38)

‖−→BC‖
‖−→AB‖ = ‖−→BE‖

‖−→DB‖ ⇔ ‖−→BC‖
‖−→AB‖ = ‖−→EC‖

‖−→AD‖ ⇔ ‖−→AD‖
‖−→AB‖ = ‖−→EC‖

‖−→BC‖
(B.39)





CLearning Parameters in Video and Image
Processing Systems

Virtually all video and image processing systems require a number of parameters
to be defined. For example a threshold value to convert a gray-scale image into a
binary image, the size of a filter kernel, the minimum and maximum allowed values
of a feature, etc. Defining suitable values for these parameters is a crucial task every
designer/programmer is faced with. This appendix provides a guideline for aiding
the designer.

C.1 Training

In general, on-line video-based systems and off-line image-based systems differ a
lot. When you have to process a single image off-line you can try different pa-
rameters in your algorithms until you achieve the desired output. When you are
processing on-line video data, however, you do not know exactly what the images
to process look like and your parameters can therefore not be tuned to a particular
image. So, what can then be done?

The answer is that we train our system and hereby learn suitable values for the
parameters. By training we mean that we capture images off-line in situations simi-
lar to the situation the system is required to be operating in. These captured training
images are then analyzed and the parameters derived. Let us look at an example.

Say your task is to segment a human hand in a video sequence. You decide to
solve the problem through the use of HSI colors. That is, you assume that the reddish
skin-color is unique in the image and by thresholding the Hue and Saturation values
you can find skin-pixels and hence the hand. The algorithm will be similar to 4.14.
The question is now, how do you define the four threshold values: TSatmin , TSatmax ,
THuemin and THuemax ?

These four threshold values represent the different values a skin-pixel can be.
So, if we capture 100 representative training images of a hand and look at the Hue
and Saturation values, then we can get some input to the choice of threshold values.
One could simply find the minimum and maximum values of Hue and Saturation
and use these as the threshold values. This will give a perfect segmentation of all
training pixels. However, this is likely to also result in some non-skin pixels being
segmented. In Fig. C.1(a) a fictive histogram of all the 100 Hue values from the
training images are shown. It is evident that the minimum and maximum values are

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7, © Springer-Verlag London Limited 2012
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Fig. C.1 (a) Histogram of 100 training images. (b) Gaussian-shaped histogram

so extreme that virtually every single pixel in the input image will satisfy the con-
dition of a skin pixel. All these non-skin pixels being segmented as skin pixel are
denoted False Positives. If we want to make sure that only real skin pixels are seg-
mented, then we probably need to have THuemin and THuemax very close to each other.
This will of course result in too few real skin pixels being segmented. These errors
are denoted False Negatives. So, regardless of how we define the thresholds we will,
in general, make incorrect segmentation. As a designer you need to balance the false
positives and false negatives when you choose the thresholds. And understand the
consequences of the two error types—are they equally important?

Looking at the histogram once more we might want to define the threshold values
around 140 and 220, respectively, since this is where the majority of the values are.

A more general approach is to use statistics, specifically, the mean and variance.
The mean is the average value of Hue and is calculated by summing all Hue values
and normalizing with the number of pixels, N , used in the training:

Hue Mean = 1

N

N∑
i=1

Huei (C.1)

where Huei is the Hue value of the ith training pixel.
The variance measures the variation of the Hue values around the mean value.

That is, how close/far from the mean the Hue values are in general. The histogram
in Fig. C.1(b) has a larger variance than the one in Fig. C.1(a). The variance is
calculated as

Hue Variance = 1

N

N∑
i=1

(Huei − Hue Mean)2 (C.2)

The variation is often represented as the standard deviation instead of the
variance. The standard deviation is simply the square root of the variance:
Standard Deviation = √

Variance.
Since we now have two values (mean and standard deviation) which represent

the data in the histogram we can define the threshold values in more general terms
as
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Table C.1 The percentage of
samples within the interval
[Tmin, Tmax], given that the
data are Gaussian distributed

α Number of samples

1 68.26%

2 95.44%

3 99.73%

4 99.99%

Tmin = Mean − α · Standard Deviation (C.3)

Tmax = Mean + α · Standard Deviation (C.4)

where α is a constant defined by the designer. To get a better feeling of α let us look
at the histogram in Fig. C.1(b). Such a bell-shape is said to be Gaussian or Nor-
mal and is characterized by most samples (training pixels) being located around one
value (the mean) and a symmetrically decreasing number of samples further away
from the mean. Many natural phenomena actually have such a shape and therefore
this shape is of great importance in many fields—including video and image pro-
cessing. For the Gaussian shape Table C.1 is true.

This means that if the histogram of your training data is Gaussian and you set
α = 1, then you know that 68.26% of your training pixels have a value between Tmin
and Tmax, etc. Even though your training samples are not completely Gaussian, you
can still use the table to get a feel for how much of you training data are within the
threshold values.

C.2 Initialization

When you train your system make sure to include training samples from as many
diverse situations as you expect the system to operate in. For example, if you train
your system on a rainy day where not much sunlight is present and then expect the
system to operate on a sunny day then, you will probably be disappointed.

Often it is not realistic to train the system to handle all different situations without
including too many false positives. A system can therefore include an initialization
phase prior to operation (sometimes also referred to as calibration). The initializa-
tion is a small program which is run before the “real” program is started. With the
example from above, the initialization program will ask the user to place his hand
in a number of different locations in front of the camera. The captured images are
(semi) automatically analyzed (Hue and Saturation values are extracted) and the
threshold values are defined. These are then input to the system when it commences
either manually or through a file.

One might argue that initialization is not desirable from a user’s perspective since
it requires an extra effort, but often it is a small price to pay for achieving a much
more robust and hence successful system performance.





DConversion Between RGB and HSI

In this appendix the conversions from the RGB color representation to the HSI
color representation, and reverse, are derived. That is, we seek a conversion from
[R,G,B] to [H,S, I ], and one from [H,S, I ] to [R,G,B]. When deriving the con-
versions we use a particular point, denoted PRGB = (PR,PG,PB). The rgb version
of this point is denoted P = (Pr ,Pg,Pb).

D.1 Conversion from RGB to HSI

We recall from Sect. 3.3.1 that HSI is short for hue, saturation and intensity, and is
defined as in Fig. 3.11. For the actual derivation it is, however, easier to define hue
and saturation in terms of rgb values as opposed to rg values.

In Chap. 3 it was explained that the rgb values span the triangle in Fig. D.1.
This triangle is defined by the three corners R′ = (1,0,0), G′ = (0,1,0), and B ′ =
(0,0,1). The point W = (1/3,1/3,1/3) is the colorless point in the center of the

triangle. Saturation is defined as the ratio ‖−−→WP ‖/‖−−→WP ′‖ and hue is defined as the

angle, θ , between the two vectors:
−−→
WR′ and

−−→
WP .

If we define the points Q = (1/3,1/3,Pb) and T = (1/3,1/3,0) then we have
two equiangular triangles WPQ and WP ′T , see Fig. D.2. Following the law of
similar triangles, see Appendix B, we can redefine saturation as

S = ‖−−→WP ‖
‖−−→WP ′‖

= ‖−−→WQ‖
‖−−→WT ‖ = ‖−−→WT ‖ − ‖−→QT ‖

‖−−→WT ‖ = 1 − ‖−→QT ‖
‖−−→WT ‖ (D.1)

From the definition of Q, T , and W we have ‖−−→WT ‖ = 1/3 and

‖−→QT ‖ =
√

(1/3 − 1/3)2 + (1/3 − 1/3)2 + (0 − Pb)2 = Pb (D.2)

Substituting this into Eq. D.1 we get

S = 1 − 3 · Pb (D.3)

Recall that Pb = PB

PR+PG+PB
and notice that PB = min{PR,PG,PB} when P is lo-

cated in the triangle WR′G′. From this follows that
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Fig. D.1 (a) The rgb triangle inside the RGB color cube. (b) The rgb triangle

Fig. D.2 The location of
different points used to define
saturation

S = 1 − 3 · min{PR,PG,PB}
PR + PG + PB

(D.4)

Similar arguments hold for the other two triangles WG′B ′ and WB ′R′ and Eq. D.4
is therefore the general expression for saturation in the HSI representation.

Hue is defined as the angle, θ , between the two vectors
−−→
WR′ and

−−→
WP , see

Fig. 3.11. Referring to Eq. B.16 we can express the angle between the vectors as

θ = cos−1
( −−→

WR′ • −−→
WP

‖−−→WR′‖ · ‖−−→WP‖

)
(D.5)

Inserting the actual points yields

−−→
WR′ = −→

R′ − −→
W =

⎡
⎣1

0
0

⎤
⎦ −

⎡
⎣1/3

1/3
1/3

⎤
⎦ =

⎡
⎣ 2/3

−1/3
−1/3

⎤
⎦ (D.6)

‖−−→WR′‖ =
√

(2/3)2 + (−1/3)2 + (−1/3)2 = √
6/9 = √

2/3 (D.7)

−−→
WP = −→

P − −→
W =

⎡
⎣Pr

Pg

Pb

⎤
⎦ −

⎡
⎣1/3

1/3
1/3

⎤
⎦ =

⎡
⎣Pr − 1/3

Pg − 1/3
Pb − 1/3

⎤
⎦ (D.8)

‖−−→WP‖ =
√

(Pr − 1/3)2 + (Pg − 1/3)2 + (Pb − 1/3)2 ⇔
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‖−−→WP‖ =
√

P 2
r + P 2

g + P 2
b − 2/3(Pr + Pg + Pb) + 3/9 ⇔

‖−−→WP‖ =
√

P 2
r + P 2

g + P 2
b − 1/3 (D.9)

where the last reduction is possible since Pr + Pg + Pb = 1. Inserting the above
expressions into Eq. D.5 yields

θ = cos−1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎣ 2/3

−1/3
−1/3

⎤
⎦ •

⎡
⎣Pr − 1/3

Pg − 1/3
Pb − 1/3

⎤
⎦

√
2/3 ·

√
P 2

r + P 2
g + P 2

b − 1/3

⎞
⎟⎟⎟⎟⎟⎟⎠

⇔

θ = cos−1
(

(2Pr/3 − 2/9) + (−Pg/3 + 1/9) + (−Pb/3 + 1/9)√
9·2
9·3 ·

√
P 2

r + P 2
g + P 2

b − 1/3

)
⇔

θ = cos−1
(

2Pr − Pg − Pb√
6P 2

r + 6P 2
g + 6P 2

b − 2

)
(D.10)

The final step is now to replace (Pr,Pg,Pb) with (PR,PG,PB). Recall that Pr =
PR/J , Pg = PG/J , Pb = PB/J , where J = PR + PG + PB . Inserting yields

θ = cos−1
(

1/J · (2PR − PG − PB)√
1/J 2(6P 2

R + 6P 2
G + 6P 2

B) − 2

)
⇔

θ = cos−1
(

2PR − PG − PB√
6P 2

R + 6P 2
G + 6P 2

B − 2J 2

)
⇔

θ = cos−1
(

1/2 · 2PR − PG − PB√
P 2

R + P 2
G + P 2

B − PR · PG − PR · PB − PG · PB

)
⇔

θ = cos−1
(

1/2 · (PR − PG) + (PR − PB)√
(PR − PG)(PR − PG) + (PR − PB)(PG − PB)

)
(D.11)

Note that the last expression is often applied in order to optimize the conversion
from an implementation point of view. Since Eq. D.5 is only valid in the range
θ ∈ [0°,180°] the final expression for hue is given below, see Appendix B for details.

H =
{

θ, if PG ≥ PB ;

360° − θ, otherwise
(D.12)
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Fig. D.3 Triangles used to derive the conversion from HSI to RGB. Note that (b) is one of the tri-
angles in Fig. D.1(b), i.e., H +H ′ = 60°. Note also that the two triangles have the same hypotenuse
(except for the length) and that the triangles are perpendicular

D.2 Conversion from HSI to RGB

The conversion from HSI to RGB depends on in which of the following triangles the
point is located: WR′G′, WG′B ′, or WB ′R′. Let us start with the situation where
0° ≤ H ≤ 120°, i.e., the triangle WR′G′.

We first convert from HSI to rgb and then from rgb to RGB. In the triangle
WR′G′ we know from Eq. D.3 that Pb = (1 − S)/3. Furthermore, we know that
Pr + Pg + Pb = 1 and hence only need to find one of the unknowns. To this end
we define the triangle in Fig. D.3(a). The base of the triangle is the line spanned by
(0,0,0), denoted O , and R′. The hypotenuse of the triangle is the line spanned by
R′ and the middle point of the line spanned by B ′ and G′. This point is denoted XR ,
see Fig. D.1. Note that the line spanned by R′ and XR passes through the gray point
W . The point Z is the intersection between the line spanned by R′ and XR , and the
plane containing P and perpendicular to the red-axis (the line spanned by R′ and
O), see Fig. D.3. This plane is denoted Γ1.

From the law of similar triangles follows that

‖−−−→
R′XR‖
‖−−→R′O‖

= ‖−−→R′Z‖
‖−−→R′K‖

(D.13)

We know that ‖−−→R′O‖ = 1 and that ‖−−→KO‖ = Pr . From this follows that ‖−−→R′K‖ =
1 − Pr . We can see that ‖−−→R′Z‖ = ‖−−−→

R′XR‖ − (‖−−→ZW‖ + ‖−−−→
WXR‖) and can therefore

rewrite Eq. D.13 to

‖−−−→
R′XR‖ − Pr · ‖−−−→

R′XR‖ = ‖−−−→
R′XR‖ − ‖−−→ZW‖ − ‖−−−→

WXR‖ ⇔ (D.14)

Pr = ‖−−→ZW‖ + ‖−−−→
WXR‖

‖−−−→
R′XR‖

= ‖−−→ZW‖
‖−−−→
R′XR‖

+ ‖−−−→
WXR‖

‖−−−→
R′XR‖

(D.15)

Using the law of similar triangles: ‖−−−→
WXR‖/‖−−−→

R′XR‖ = ‖−→YO‖/‖−−→R′O‖ = ‖−→YO‖ =
1/3. The first term is a bit more tricky to rewrite and we need to introduce yet
another triangle to this end. First have a look at Fig. D.3(a) and recall that Γ1 is



D.2 Conversion from HSI to RGB 209

a plane perpendicular to the red axis, which contains the points: P , K and Z. We
now define another plane, denoted Γ2, which contains the points: R′, Z, W , XR ,
and which is perpendicular to the triangle R′XRO . This plane contains all possible
values of rgb, and hence also P . Since P belongs to both planes, P must be part
of the line defined by the intersection of the two planes. This line contains Z and
is perpendicular to the triangle R′XRO . That is, if you place your fingertip on Z

in Fig. D.3(a) and lift it vertically, then you are moving along this line and will
eventually reach P . Having this in mind we now define the triangle R′WXB , where
XB is the middle point of the line spanned by R′ and G′, see Fig. D.3(b). Note that
this figure is also part of Fig. D.1(b).

From Fig. D.3(b) follows that

cos(H) = ‖−−→ZW‖
‖−−→WP ‖ ⇔ ‖−−→ZW‖ = ‖−−→WP ‖ · cos(H) (D.16)

From the definition of saturation we have ‖−−→WP‖ = S · ‖−−→WP ′‖. Realizing that H ′ =
60° − H we can express ‖−−→WP ′‖ as

‖−−→WP ′‖ = ‖−−−→
WXB‖

cos(60° − H)
(D.17)

Inserting Eqs. D.16 and D.17 into Eq. D.15 yields

Pr = 1

‖−−−→
R′XR‖

· S · ‖−−−→
WXB‖ · cos(H)

cos(60° − H)
+ 1

3
(D.18)

Since ‖−−−→
WXB‖ = ‖−−−→

WXR‖ and ‖−−−→
WXR‖/‖−−−→

R′XR‖ = 1/3 we can reduce Eq. D.18 to

Pr = 1

3

(
1 + S · cos(H)

cos(60° − H)

)
(D.19)

After having calculated Pb and Pr we can find the last coordinate as Pg = 1 − Pb −
Pr . The final step is to convert from rgb to RGB. We know that Pr = PR/(PR +
PG + PB), Pg = PG/(PR + PG + PB), Pb = PB/(PR + PG + PB) and that I =
(PR +PG+PB)/3. From this follows that PR = 3IPr , PG = 3IPg , and PB = 3IPb .
Substituting into Eqs. D.3 and D.19 yields the following expressions which are valid
when 0° ≤ H ≤ 120°:

PB = I − I · S (D.20)

PR = I ·
(

1 + S · cos(H)

cos(60° − H)

)
(D.21)

PG = 3I − PR − PB (D.22)
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Similar expressions can be derived for the remaining hue values. The only difference
is that the geometry in Fig. D.3(b) is only valid when 0° ≤ H ≤ 120°. The hue value
is therefore normalized, denoted Hn, to this interval before being applied. The final
conversion from HSI to RGB therefore becomes

Hn =
⎧⎨
⎩

0, if 0° ≤ H ≤ 120°;

H − 120°, if 120° < H ≤ 240°;

H − 240°, if 240° < H < 360°

(D.23)

PR =

⎧⎪⎨
⎪⎩

I · (1 + S·cos(Hn)

cos(60°−Hn)

)
, if 0° ≤ H ≤ 120°;

I − I · S, if 120° < H ≤ 240°;

3I − PG − PB, if 240° < H < 360°

(D.24)

PG =
⎧⎨
⎩

3I − PR − PB, if 0° ≤ H ≤ 120°;

I · (1 + S·cos(Hn)

cos(60°−Hn)

)
, if 120° < H ≤ 240°;

I − I · S, if 240° < H < 360°

(D.25)

PB =

⎧⎪⎨
⎪⎩

I − I · S, if 0° ≤ H ≤ 120°;

3I − PR − PG, if 120° < H ≤ 240°;

I · (1 + S·cos(Hn)

cos(60°−Hn)

)
, if 240° < H < 360°

(D.26)
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In this appendix the conversions from the RGB color representation to the HSV
color representation, and reverse, are derived. That is, we seek a conversion from
[R,G,B] to [H,S,V ], and one from [H,S,V ] to [R,G,B].

E.1 Conversion from RGB to HSV

We recall from Sect. 3.3.2 that HSV is short for hue, saturation and value, and that
value is defined as

V = max{R,G,B} (E.1)

We start by defining a sub-cube of dimension (V ,V,V ) inside the RGB color
cube, see Fig. E.1(a). Since V is equal to the maximum RGB value the RGB point
to be converted is located on one of the sides of this sub-cube. Imagine now that we
define a plane perpendicular to the gray-vector and project the corners of the sub-
cube onto this plane. This corresponds to placing your eye at [255,255,255] and
looking at [0,0,0]. The result will be the hexagon illustrated in Fig. E.1(b). Each
corner of the hexagon will point toward one of the corners of the RGB color cube
and are therefore denoted R’, Y, G’, C, B’, and M, corresponding to red, yellow,
green, cyan, blue, and magenta, respectively.1 In the center of the hexagon we will
have black and white at the same point, denoted W . The RGB point to be converted
is also projected onto the plane and denoted P .

The six corners of the hexagon have the same distance to W . From this follows
that the distances between adjacent corners are equal to each other and to the dis-
tance from a corner to W . Since all lengths in the hexagon are equal we can scale
the hexagon as we please. We choose to scale the hexagon so that all sides have the
length V , which should be interpreted in the following way.

If we assume max{R,G,B} = R we know that the RGB point is located on the
side of the sub-cube defined as R = V . This corresponds to one of the two sextants
MWR or RWY . In these two sextants the “position” of P is given as (G,B), see

1The primes are introduced in order to distinguish the color values (R,G,B) from the R, G, and
B corners of the hexagon.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7, © Springer-Verlag London Limited 2012
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Fig. E.1 (a) The sub-cube inside the RGB color cube. (b) The hexagon defined when looking
at the sub-cube from the point (255,255,255) and toward the point (0,0,0). The corners of the
hexagon correspond to the corners of the sub-cube. The dashed lines indicate the lines not visible
if the sub-cube is solid

Fig. E.1(b), meaning that we can derive hue and saturation in the two sextants from
Fig. E.1(b) and then directly express hue and saturation in terms of the RGB values.
Similar arguments can be made for the remaining sextants.

E.1.1 HSV: Saturation

Looking at Fig. E.1(b) saturation is defined as the ratio between the distance from
the W to P and the distance from W to P ′, where P ′ is the intersection between the
vectors spanned by W and P , and R and Y . That is, saturation is given as

S = ‖−−→WP‖
‖−−→WP ′‖

(E.2)

Since the triangles WPD and WP ′Y are similar, see Appendix B, we have

S = |−−→WP ‖
‖−−→WP ′‖

= ‖−−→WD‖
‖−−→WY‖ (E.3)

From this follows that

S = ‖−−→WD‖
‖−−→WY‖ = ‖−−→WY‖ − ‖−→DY‖

‖−−→WY‖ (E.4)

We know from the definition of the sub-cube that ‖−−→WY‖ = V and can see in
Fig. E.1(b) that ‖−→DY‖ = B . This yields S = (V − B)/V . We can see that B =
min{R,G,B} in the sextant where P is located and can therefore express saturation
as
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S = V − min{R,G,B}
V

(E.5)

where S ∈ [0,1]. Similar reasoning for the other five sextants in the hexagon shows
that Eq. E.5 is indeed a general equation that holds for the entire hexagon.

E.1.2 HSV: Hue

In Fig. E.1(b) hue is illustrated as the angle between
−−→
WR and

−−→
WP . Hue is, however,

not calculated as an angle but rather as the following ratio:

H = ‖−→AP‖
‖−→AD‖ (E.6)

where A, P , and D are defined in Fig. E.1(b). This definition is only valid when P

is located in the sextant shown in Fig. E.1(b), i.e., then R = V and G ≥ B . In this
sextant hue will be a value in the interval [0,1] where hue = 0 corresponds to red
and hue = 1 corresponds to yellow. The calculated hue value is normally multiplied
with 60° in order to obtain a hue value in the range of [0°,360°[ when considering
all sextants.2 Below we show how hue is calculated in the sextant RWY .

Looking at Fig. E.1(b) we can see that ‖−→AP‖ = ‖−→EP‖ − ‖−→EA‖, ‖−→EA‖ = ‖−→AF‖
and that ‖−→AD‖ = ‖−−→WD‖. From this follows that

H = ‖−→AP‖
‖−→AD‖ = ‖−→EP‖ − ‖−→AF‖

‖−−→WD‖ (E.7)

Above we saw that ‖−−→WD‖ = V − min{R,G,B} and stated that the “position” of P

in this sextant is given as (G,B). Combining this with Eq. E.7 and converting the
ratio into degrees we have

Hdeg = G − B

V − min{R,G,B} · 60° (E.8)

A similar geometric reasoning can be carried out for the sextant MWR where R =
V and B > G resulting in:

Hdeg =
(

R − B

V − min{R,G,B} + 5

)
· 60° (E.9)

Moving on to the sextant YWG where G = V and R > B we can derive that

2Note that the range is defined as [0°,360°[ as opposed to [0°,360°]. The reason for this is that
360° = 0°, hence 360° is not included in the interval, but 359.99999° etc. is.
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Hdeg =
(

V − R

V − min{R,G,B} + 1

)
· 60° (E.10)

For reasons that will be clear when we look at the next sextant, we rewrite Eq. E.10
in the following way:

Hdeg =
(

V − R

V − min{R,G,B} + 1 + 1 − 1

)
· 60° ⇔

Hdeg =
(

V − R

V − min{R,G,B} + 2 − V − min{R,G,B}
V − min{R,G,B}

)
· 60° ⇔

Hdeg =
(

B − R

V − min{R,G,B} + 2

)
· 60° (E.11)

For the sextant GWC where G = V and B ≥ R we can derive that

Hdeg =
(

B − R

V − min{R,G,B} + 2

)
· 60° (E.12)

We can see that Eqs. E.11 and E.12 are the same, which means that we only need
one equation when G = V . The same holds for the last two sextants and the final
equation for hue therefore becomes

Hdeg =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

G−B
V −min{R,G,B} · 60°, if V = R and G ≥ B;(

B−R
V −min{R,G,B} + 2

) · 60°, if G = V ;(
R−G

V −min{R,G,B} + 4
) · 60°, if B = V ;(

R−B
V −min{R,G,B} + 5

) · 60°, if V = R and G < B

(E.13)

where Hdeg ∈ [0,360°[. Note that hue is sometimes defined as a number in the inter-
val [0,1[. This is obtained by dividing by 6 instead of multiplying by 60. Sometimes
the interval [0,2π [ is used. This is obtained by dividing by 3 and multiplying by π

instead of multiplying by 60.
Note that hue is undefined when no color is present, i.e., R = G = B . One could

define it to be 0 (or some other value), but a better approach is often to define it as
the hue value of the previous pixel. For a gray-scale image this will not make sense,
but then again, no point in converting a gray-scale image into an HSV image in the
first place! Note also that saturation is undefined in Eq. E.5 when (R = G = B = 0).
We therefore make the following definition: S ≡ 0 when (R = G = B = 0).

E.2 Conversion from HSV to RGB

The conversion from HSV to RGB depends on in which sextant the point is located.
We can assess that by dividing the hue value by 60 and taking the closets integer
equal to or just below. This directly provides and index K in the range: 0 ≤ K ≤ 5,
stating in which sextant the point is.
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When K = 0 we are in the sextant RWY and find R, G, and B in the following
way. First we realize that R = V in this sextant. Next we use the fact that B =
min{R,G,B} in this sextant. Inserting this into Eq. E.5 we get B = V · (1 − S). G

is found using the following equation derived above:

H = G − B

V − min{R,G,B} (E.14)

Substituting we have

H = G − V · (1 − S)

V − V · (1 − S)
⇔

G = H · V − H · V · (1 − S) + V · (1 − S) ⇔
G = V · (H − H + H · S + 1 − S) ⇔
G = V · (1 − S · (1 − H)

)
(E.15)

When K = 1 the point is located in the sextant YWG. In this sextant we know from
above that G = V and B = min{R,G,B}. R is found using the following equation,
derived above:

H = V − R

V − min{R,G,B} (E.16)

Substituting we have

H = V − R

V − V · (1 − S)
⇔ (E.17)

R = V − H · V + H · V · (1 − S) ⇔ (E.18)

R = V · (1 − S · H) (E.19)

For the remaining four sextants we end up with similar results. The last thing re-
maining before we can put it all together and derive a general conversion from HSV
to RGB is a method to map from Hdeg to H . This is done as follows:

H ′ = Hdeg

60°
(E.20)

K = ⌊
H ′⌋ (E.21)

H = H ′ − K (E.22)

where �x� means the floor of x, see Appendix B. The final conversion is now given
as
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X = V · (1 − S) (E.23)

Y = V · (1 − S · H) (E.24)

Z = V · (1 − S · (1 − H)
)

(E.25)

(R,G,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(V ,Z,X), if K = 0;

(Y,V,X), if K = 1;

(X,V,Z), if K = 2;

(X,Y,V ), if K = 3;

(Z,X,V ), if K = 4;

(V ,X,Y ), if K = 5

(E.26)
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In this appendix the conversions from the RGB color space to the YUV/YCbCr (and
similar) color spaces, and reverse, are derived. That is, we seek a conversion from
[R,G,B] to [Y,X1,X2], and one from [Y,X1,X2] to [R,G,B].

In Sect. 3.3.3 it was stated that the luminance, Y , contains intensity information
while X1 and X2 code the color information as weighted difference signals with
respect to Y . That is:

Y = WR · R + WG · G + WB · B Y ∈ [0,255] (F.1)

X1 = WX1

1 − WB

· (B − Y) X1 ∈ [−WX1 · 255,WX1 · 255] (F.2)

X2 = WX2

1 − WR

· (R − Y) X2 ∈ [−WX2 · 255,WX2 · 255] (F.3)

F.1 The Output of a Colorless Signal

When a colorless signal is present, i.e., R = G = B , we have

X1 = WX1 · B − Y

1 − WB

= WX1 · B − WR · R − WG · G − WB · B
1 − WB

⇒

X1 = WX1 · B − WR · B − WG · B − WB · B
1 − WB

⇔

X1 = WX1 · B(1 − WR − WG − WB)

1 − WB

= 0 (F.4)

X2 = WX2 · R − Y

1 − WR

= WX2 · R − WR · R − WG · G − WB · B
1 − WR

⇒

X2 = WX2 · R − WR · R − WG · R − WB · R
1 − WR

⇔

X2 = WX2 · R(1 − WR − WG − WB)

1 − WR

= 0 (F.5)

since WR + WG + WB = 1.

T.B. Moeslund, Introduction to Video and Image Processing,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-2503-7, © Springer-Verlag London Limited 2012
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F.2 The Range of X1 and X2

The minimum value for X1 will be when (R,G,B) = (255,255,0). We will then
have

X1 = WX1 · B − WR · R − WG · G − WB · B
1 − WB

⇒

X1 = WX1 · −WR · 255 − WG · 255

1 − WB

⇒

X1 = WX1 · −255 · (WR + WG)

1 − WB

⇒

X1 = WX1 · −255(1 − WB)

1 − WB

= −255 · WX1 (F.6)

since WR + WG + WB = 1. The maximum value for X1 will be when (R,G,B) =
(0,0,255). We will then have

X1 = WX1 · B − WR · R − WG · G − WB · B
1 − WB

⇒

X1 = WX1 · 255 − WB · 255

1 − WB

⇒

X1 = WX1 · 255(1 − WB)

1 − WB

= 255 · WX1 (F.7)

So the range for X1 is [−WX1 · 255,WX1 · 255]. Note that a similar argument exists
for X2.

F.3 YUV

The actual conversion from RGB to YUV is found by inserting the following weight
factors into Eqs. F.1, F.2, and F.3: WR = 0.299, WG = 0.587, WB = 0.114, WX1 =
0.436, and WX2 = 0.615. To simplify matter Eqs. F.2 and F.3 are first rewritten as

X1 = WX1

1 − WB

· (B − Y) ⇒

X1 = WX1 · B − WR · R − WG · G − WB · B
1 − WB

⇔

X1 = −WX1 · WR

1 − WB

· R + −WX1 · WG

1 − WB

· G + WX1 · B (F.8)

X2 = WX2

1 − WR

· (R − Y) ⇒

X2 = WX1 · R − WR · R − WG · G − WB · B
1 − WR

⇔
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X2 = WX2 · R + −WX2 · WG

1 − WR

· G + −WX2 · WB

1 − WR

· B (F.9)

Inserting we get the following conversion from RGB to YUV:

⎡
⎣ Y

U

V

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114

−0.147 −0.289 0.436
0.615 −0.515 −0.100

⎤
⎦ ·

⎡
⎣R

G

B

⎤
⎦ Y ∈ [0,255]

U ∈ [−111,111]
V ∈ [−157,157]

(F.10)

The conversion from YUV to RGB is found by rearranging Eqs. F.1, F.2, and F.3
and inserting the weight factors as above. The equations for R and B follow trivially
by rearranging Eqs. F.2 and F.3, respectively:

R = Y + X2 · 1 − WR

WX2
(F.11)

B = Y + X1 · 1 − WB

WX1
(F.12)

The equation for G is derived by inserting Eqs. F.11 and F.12 into F.1 and rearrang-
ing:

Y = WR ·
(

Y + X2 · 1 − WR

WX2

)
+ WG · G + WB ·

(
Y + X1 · 1 − WB

WX1

)
⇔

G = Y · (1 − WR − WB)

WG

− X1 · WB · 1−WB

WX1

WG

− X2 · WR · 1−WR

WX2

WG

⇔

G = Y − X1 · WB · (1 − WB)

WX1 · WG

− X2 · WR · (1 − WR)

WX2 · WG

(F.13)

Inserting the weights for YUV yields the following conversion from YUV to RGB:

⎡
⎣R

G

B

⎤
⎦ =

⎡
⎣1.000 0.000 1.140

1.000 −0.395 −0.581
1.000 2.032 0.000

⎤
⎦ ·

⎡
⎣ Y

U

V

⎤
⎦ R ∈ [0,255]

G ∈ [0,255]
B ∈ [0,255]

(F.14)

F.4 YCbCr

The conversion from RGB to YCbCr is found by inserting the following weights
into Eqs. F.1, F.8, and F.9: WR = 0.299, WG = 0.587, WB = 0.114, WX1 = 0.5, and
WX2 = 0.5

⎡
⎣ Y

Cb

Cr

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114

−0.169 −0.331 0.500
0.500 −0.419 −0.081

⎤
⎦ ·

⎡
⎣R

G

B

⎤
⎦ +

⎡
⎣ 0

128
128

⎤
⎦ Y ∈ [0,255]

Cb ∈ [0,255]
Cr ∈ [0,255]

(F.15)



220 F Conversion Between RGB and YUV/YCbCr

The conversion from YCbCr to RGB is found by inserting the same weights into
Eqs. F.11, F.12, and F.13:

⎡
⎣R

G

B

⎤
⎦ =

⎡
⎣1.000 0.000 1.403

1.000 −0.344 −0.714
1.000 1.773 0.000

⎤
⎦ ·

⎡
⎣ Y

Cb − 128
Cr − 128

⎤
⎦ R ∈ [0,255]

G ∈ [0,255]
B ∈ [0,255]

(F.16)

Note that 128 is added/subtracted in order to bring the values into the range [0,255].
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A
Absolute value, 191

Programming, 191
Achromatic color, 26, 40
Acquisition

Image, 7, 171, 180
Video, 117

Additive colors, 27
Alpha blending, 65, 166
Alpha-channel, 66
Analog-to-digital converter, 15, 17
Aperture, 14, 19
Artificial intelligence, 114
Automatic gain control, 15

B
Background subtraction, 120, 126
Backward mapping, 146, 161, 162
Bayer pattern, 28
Binary image, 55
Binary Large Object, see BLOB
Binary numbers, 187
Binary to decimal, 188
Bit, 187
BLOB, 103, 175, 182, 184, 185

Analysis, 4, 103
Classification, 110, 113
Extraction, 103
Feature, see Feature

Blooming, 19
Border problem, 74, 79, 94
Brightness, 25, 40, 43, 60
Butterfly effect, 176
Byte, 187

C
Calibration, 173, 203
Camera calibration, 152
Chamfer matching, 88
Chroma-keying, 68
Chromaticity, 136

Chromaticity plane, 32
Classification, 127, 182, see also BLOB

classification
Box classifier, 110
Decision region, 110
Mahalanobis distance classifier, 113
Statistical classifier, 112
Weighted Euclidean distance, 112

Closing, 58, 97, 122, 182
Color channels, 48, 50
Color conversion

HSI to RGB, 37, 208
HSV to RGB, 38, 214
RGB to gray-scale, 30, 39, 181
RGB to HSI, 36, 205
RGB to HSV, 37, 211
RGB to rgI, 33

Programming, 33
RGB to YCbCr, 40, 219
RGB to YUV, 39, 219
rgI to RGB, 33

Programming, 33
YCbCr to RGB, 40, 220
YUV to RGB, 40, 219

Color correlogram, 137
Color image, 25
Color representation

HSI, 36, 69, 201
HSV, 37
Normalized RGB, 32
RGB, 27, 158, 181
rgI, 33
YCbCr, 38, 118
YUV, 38

Color thresholding, 57, 68, 201
Compression, 117

Bandwidth, 119
Blocking artifacts, 119
Entropy coding, 118

Computer vision, 2
Condensation algorithm, 137
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Connected component analysis, 103, 113, 184
Connectivity, 103, 175
Contrast, 45
Convolution, 86
Correlation, 75

Programming, 76
CT, 22

D
Data association, 133
Decimal to binary, 188
Demosaicing, 28
Depth-of-field, 12, 119
Digital image, 19
Dilation, 94, 158
Direct Linear Transform, 149

E
Edge detection, 81, 87, 99, 158

Canny, 88
Electromagnetic spectrum, 7, 22, 25
Electromagnetic wave, 7
EM spectrum, see Electromagnetic spectrum
Erosion, 95
Exposure, 15
Exposure time, 15

F
False negatives, 122, 124, 202
False positives, 122, 124, 202, 203
Feature, 107, 113, 135, 138, 175, 182, 201

Area, 107, 112, 182
Bounding box, 107, 175
Bounding box center, 109
Bounding box ratio, 108
Bounding circle, 107
Center of gravity, 108
Center of mass, 108, 175
Centroid, 108
Circularity, 109, 112, 182
Compactness, 108
Convex hull, 108
Perimeter, 109, 113, 182

Feature space, 110, 113, 184
Feature vector, 109
Field-of-view, 13, 119, 180
Filters

Correlation, 76
Difference, 75
Gaussian, 78, 88
Kernel, 75
Kernel coefficients, 75
Kernel normalization, 77
Laplacian, 86

Maximum, 75, 157
Mean, 71, 77, 159
Median, 71, 122, 126, 174

Programming, 73
Minimum, 75, 157
Prewitt, 84
Programming, 76
Radius, 73
Rank, 75, 157
Sharpening, 85
Size, 73
Sobel, 84

Focal length, 11
Focal point, 11
Focus, 12
Forward mapping, 145, 160, 162
FOV, see Field-of-view
Framerate, 117

G
Gamma, 41
Gaussian distribution, 78, 202, 203
Geometric transformation, 141, 160

Affine, 142, 144, 165
Inverse, 146
Local, 165
Non-linear, 160
Polar, 160
Ripple, 164
Rotation, 142
Scaling, 142

Programming, 142
Shearing, 144
Spherical, 163
Translation, 142
Twirl, 162

Ghost objects, 125, 157
Gradient, 81

Magnitude, 83
Grass-fire algorithm

Recursive, 104
Sequential, 106

Gray-level mapping, 43
Exponential, 48
Gamma, 46
Inversion, 65, 156
Logarithmic, 48
Non-linear, 46
Programming, 68
Solarize, 156

Gray-level quantization, 19
Gray-level resolution, 19
Gray-level value, 19
Gray-scale image, 20
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Gray-scale value, 19
Gray-vector, 30

H
Hertz, 7
Histogram, 49

Bi-modal, 56
Color, 50, 136
Cumulative, 53
Equalization, 53
Modified stretching, 53
Problematic, 91
Stretching, 51, 64

Homogeneous coordinates, 144
Homography, 148, 174, 181
HSI, 36, 201
HSV, 37
Hue, 34, 201
Human eye

Cones, 25
Photoreceptors, 25
Rods, 25

Human vision, 2

I
Idempotent, 97, 98
Illumination, 8, 26, 59, 60, 123

Backlighting, 10
Diffuse, 10
Uneven, 63, 182

Image, 19
Image analysis, 2
Image arithmetic, 63

Addition, 64
Inversion, 65, 156
Overflow, 64
Subtraction, 64
Underflow, 64

Image differencing, 120, 157
Image manipulation, 2
Image resampling, 18
Image sensor, 15
Infrared, 10, 22, 171
Initialization, 203
Interpolation, 147

Bilinear, 147
First-order, 147
Zero-order, 147

J
JPEG, 40

K
Kalman filter, 137
Kernel, 75
Keystoning, 148
Kinect, 22
KLT-tracker, 137

L
Lens, 11
Lightness, 40
Linear algebra, 150, 197
Logic

AND, 63
NOT, 63
OR, 63
XOR, 63

Look-up-table (LUT), 58, 152
Luma, 40
Luminance, 31, 40

M
Machine learning, 114
Machine vision, 2, 9, 22, 81, 114
Matrix, 195
Mean, 71, 127, 202
Mean filter, 71, 77, 159
Median filter, 71, 122, 126, 174

Programming, 73
Morphing, 165
Morphology, 91, 174

Boundary detection, 99, 109
Closing, 58, 97, 122, 182
Compound operation, 91
Dilation, 94, 158
Erosion, 95
Fit operation, 92
Hit operation, 92
Opening, 122
Structuring element, 91

Motion blur, 17, 119, 165
Motion model, 131
MPEG, 40
MR, 22
Multiple hypothesis filter, 137

N
Neighborhood processing, 157
Non-maximum suppression, 88
Normalized RGB, 32

O
Opening, 122
Optical

Axis, 11
Center, 11
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Optical (cont.)
System, 10
Zoom, 12

Otsu’s method, 60
Outlier, 111
Over-exposure, 19

P
Particle filter, 137
Photon, 7

Energy, 7
Frequency, 7
Wavelength, 7

Pin-hole model, 152
Pixel, 15
Pixel intensity, 19, 40
Point processing, 156

Programming, 67
Predict-match-update framework, 129
Prediction, 131
Preprocessing, 181
Primary colors, 25
Prime, 41
Programming examples, v

Absolute value, 191
Correlation, 76
Double summation, 193
Gray-level mapping, 68
Maximun value, 191
Median filter, 73
Point processing, 67
RGB representation, 27
RGB to rgI, 33
rgI to RGB, 33
Scaling, 146
Summation, 193

Projective transformation, 149
Prototype model, 110, 113
Pseudo color, 41
Pure color, 30

R
Randomness inversion, 159
Reduced colors, 158
Reference image, 120
Region growing, 113
Region of interest, 20, 21, 80, 107, 131
Representation, 3, 175, 182
RGB, 27, 69, 158, 181

Color cube, 30, 40, 58
Color space, 30

RgI, 33
Right angle triangle, 160
Right angled triangle, 13, 198

Robot, 177
ROI, see Region of interest

S
Salt-and-pepper noise, 71
Saturation, 19, 34, 201
Seed point, 113
Segmentation, 3, 56, 58, 110, 124, 127, 132,

134, 174, 182, 201
Over, 91
Under, 91
Video, 117

Sensor, 15
Sequential Monte Carlo filtering, 137
Shade, 41
Shadows, 127
Shutter, 15
SIFT, 137
Signal processing, 2
Silhouette, 55
Similar triangles, 11, 198, 205
Skeletonization, 100
Spatial quantization, 18
Spatial resolution, 18
Standard deviation, 125, 202
State vector, 129
Subtractive colors, 26

T
Tangent, 82
Tangent-plane, 82
Template matching, 78

Correlation coefficient, 80
Normalized cross correlation, 80
XOR, 78
Zero-mean normalized cross-correlation,

80
Texture, 107, 135
Thermographic image, 22
Thin lens equation, 12
Thinning, 100
Thresholding, 55, 81, 120, 174, 182

Automatic, 60, 61, 68, 182
Color, 57, 68, 201
Hysteresis, 88
Otsu’s method, 60
Video, 59

Time-of-flight, 22
Tint, 41
Tone, 41
Tracking, 129
Tracking multiple objects, 133
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Tracking-by-detection, 129
Training, 58, 114, 126, 184, 201
Training images, 201
True color, 41

V
Variance, 60, 109, 111, 127, 202
Vector, 194
Video, 117
Visual effects, 155
Visual spectrum, 8, 25

W
Warping, 165

X
X-ray, 22

Y
YCbCr, 38, 118
YUV, 38

Z
Zero-crossing, 87
Zoom, 12
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